3.97.59 \(\int \frac {-72 x+144 x^2-108 x^3+10 x^4+15 x^5+(-48 x^2-72 x^3) \log (x)+(-12 x^2+12 x^3-36 x^4) \log ^2(x)+(-8 x^3-12 x^4) \log ^3(x)+(-2 x^4-3 x^5) \log ^4(x)+(72 x+108 x^2-30 x^3-45 x^4+(96 x+144 x^2) \log (x)+(12 x+12 x^2+72 x^3) \log ^2(x)+(24 x^2+36 x^3) \log ^3(x)+(6 x^3+9 x^4) \log ^4(x)) \log (2+3 x)+(30 x^2+45 x^3+(-48-72 x) \log (x)+(-24 x-36 x^2) \log ^2(x)+(-24 x-36 x^2) \log ^3(x)+(-6 x^2-9 x^3) \log ^4(x)) \log ^2(2+3 x)+(-10 x-15 x^2+(8+12 x) \log ^3(x)+(2 x+3 x^2) \log ^4(x)) \log ^3(2+3 x)}{-72 x^2-108 x^3+10 x^4+15 x^5+(-24 x^3-36 x^4) \log ^2(x)+(-2 x^4-3 x^5) \log ^4(x)+(72 x+108 x^2-30 x^3-45 x^4+(48 x^2+72 x^3) \log ^2(x)+(6 x^3+9 x^4) \log ^4(x)) \log (2+3 x)+(30 x^2+45 x^3+(-24 x-36 x^2) \log ^2(x)+(-6 x^2-9 x^3) \log ^4(x)) \log ^2(2+3 x)+(-10 x-15 x^2+(2 x+3 x^2) \log ^4(x)) \log ^3(2+3 x)} \, dx\)

Optimal. Leaf size=30 \[ x+\log \left (5-\left (-\log ^2(x)+\frac {6}{-x+\log (2+3 x)}\right )^2\right ) \]

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-72*x + 144*x^2 - 108*x^3 + 10*x^4 + 15*x^5 + (-48*x^2 - 72*x^3)*Log[x] + (-12*x^2 + 12*x^3 - 36*x^4)*Log
[x]^2 + (-8*x^3 - 12*x^4)*Log[x]^3 + (-2*x^4 - 3*x^5)*Log[x]^4 + (72*x + 108*x^2 - 30*x^3 - 45*x^4 + (96*x + 1
44*x^2)*Log[x] + (12*x + 12*x^2 + 72*x^3)*Log[x]^2 + (24*x^2 + 36*x^3)*Log[x]^3 + (6*x^3 + 9*x^4)*Log[x]^4)*Lo
g[2 + 3*x] + (30*x^2 + 45*x^3 + (-48 - 72*x)*Log[x] + (-24*x - 36*x^2)*Log[x]^2 + (-24*x - 36*x^2)*Log[x]^3 +
(-6*x^2 - 9*x^3)*Log[x]^4)*Log[2 + 3*x]^2 + (-10*x - 15*x^2 + (8 + 12*x)*Log[x]^3 + (2*x + 3*x^2)*Log[x]^4)*Lo
g[2 + 3*x]^3)/(-72*x^2 - 108*x^3 + 10*x^4 + 15*x^5 + (-24*x^3 - 36*x^4)*Log[x]^2 + (-2*x^4 - 3*x^5)*Log[x]^4 +
 (72*x + 108*x^2 - 30*x^3 - 45*x^4 + (48*x^2 + 72*x^3)*Log[x]^2 + (6*x^3 + 9*x^4)*Log[x]^4)*Log[2 + 3*x] + (30
*x^2 + 45*x^3 + (-24*x - 36*x^2)*Log[x]^2 + (-6*x^2 - 9*x^3)*Log[x]^4)*Log[2 + 3*x]^2 + (-10*x - 15*x^2 + (2*x
 + 3*x^2)*Log[x]^4)*Log[2 + 3*x]^3),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [B]  time = 0.46, size = 95, normalized size = 3.17 \begin {gather*} x-2 \log (x-\log (2+3 x))+\log \left (36-5 x^2+12 x \log ^2(x)+x^2 \log ^4(x)+10 x \log (2+3 x)-12 \log ^2(x) \log (2+3 x)-2 x \log ^4(x) \log (2+3 x)-5 \log ^2(2+3 x)+\log ^4(x) \log ^2(2+3 x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-72*x + 144*x^2 - 108*x^3 + 10*x^4 + 15*x^5 + (-48*x^2 - 72*x^3)*Log[x] + (-12*x^2 + 12*x^3 - 36*x^
4)*Log[x]^2 + (-8*x^3 - 12*x^4)*Log[x]^3 + (-2*x^4 - 3*x^5)*Log[x]^4 + (72*x + 108*x^2 - 30*x^3 - 45*x^4 + (96
*x + 144*x^2)*Log[x] + (12*x + 12*x^2 + 72*x^3)*Log[x]^2 + (24*x^2 + 36*x^3)*Log[x]^3 + (6*x^3 + 9*x^4)*Log[x]
^4)*Log[2 + 3*x] + (30*x^2 + 45*x^3 + (-48 - 72*x)*Log[x] + (-24*x - 36*x^2)*Log[x]^2 + (-24*x - 36*x^2)*Log[x
]^3 + (-6*x^2 - 9*x^3)*Log[x]^4)*Log[2 + 3*x]^2 + (-10*x - 15*x^2 + (8 + 12*x)*Log[x]^3 + (2*x + 3*x^2)*Log[x]
^4)*Log[2 + 3*x]^3)/(-72*x^2 - 108*x^3 + 10*x^4 + 15*x^5 + (-24*x^3 - 36*x^4)*Log[x]^2 + (-2*x^4 - 3*x^5)*Log[
x]^4 + (72*x + 108*x^2 - 30*x^3 - 45*x^4 + (48*x^2 + 72*x^3)*Log[x]^2 + (6*x^3 + 9*x^4)*Log[x]^4)*Log[2 + 3*x]
 + (30*x^2 + 45*x^3 + (-24*x - 36*x^2)*Log[x]^2 + (-6*x^2 - 9*x^3)*Log[x]^4)*Log[2 + 3*x]^2 + (-10*x - 15*x^2
+ (2*x + 3*x^2)*Log[x]^4)*Log[2 + 3*x]^3),x]

[Out]

x - 2*Log[x - Log[2 + 3*x]] + Log[36 - 5*x^2 + 12*x*Log[x]^2 + x^2*Log[x]^4 + 10*x*Log[2 + 3*x] - 12*Log[x]^2*
Log[2 + 3*x] - 2*x*Log[x]^4*Log[2 + 3*x] - 5*Log[2 + 3*x]^2 + Log[x]^4*Log[2 + 3*x]^2]

________________________________________________________________________________________

fricas [B]  time = 0.69, size = 93, normalized size = 3.10 \begin {gather*} x + \log \left (\log \relax (x)^{4} - 5\right ) - 2 \, \log \left (-x + \log \left (3 \, x + 2\right )\right ) + \log \left (\frac {x^{2} \log \relax (x)^{4} + {\left (\log \relax (x)^{4} - 5\right )} \log \left (3 \, x + 2\right )^{2} + 12 \, x \log \relax (x)^{2} - 5 \, x^{2} - 2 \, {\left (x \log \relax (x)^{4} + 6 \, \log \relax (x)^{2} - 5 \, x\right )} \log \left (3 \, x + 2\right ) + 36}{\log \relax (x)^{4} - 5}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((3*x^2+2*x)*log(x)^4+(12*x+8)*log(x)^3-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^4+(-36*x^2
-24*x)*log(x)^3+(-36*x^2-24*x)*log(x)^2+(-72*x-48)*log(x)+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+
(36*x^3+24*x^2)*log(x)^3+(72*x^3+12*x^2+12*x)*log(x)^2+(144*x^2+96*x)*log(x)-45*x^4-30*x^3+108*x^2+72*x)*log(3
*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-12*x^4-8*x^3)*log(x)^3+(-36*x^4+12*x^3-12*x^2)*log(x)^2+(-72*x^3-48*x^2)*log(x
)+15*x^5+10*x^4-108*x^3+144*x^2-72*x)/(((3*x^2+2*x)*log(x)^4-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^
4+(-36*x^2-24*x)*log(x)^2+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+(72*x^3+48*x^2)*log(x)^2-45*x^4-
30*x^3+108*x^2+72*x)*log(3*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-36*x^4-24*x^3)*log(x)^2+15*x^5+10*x^4-108*x^3-72*x^2
),x, algorithm="fricas")

[Out]

x + log(log(x)^4 - 5) - 2*log(-x + log(3*x + 2)) + log((x^2*log(x)^4 + (log(x)^4 - 5)*log(3*x + 2)^2 + 12*x*lo
g(x)^2 - 5*x^2 - 2*(x*log(x)^4 + 6*log(x)^2 - 5*x)*log(3*x + 2) + 36)/(log(x)^4 - 5))

________________________________________________________________________________________

giac [B]  time = 1.78, size = 95, normalized size = 3.17 \begin {gather*} x + \log \left (x^{2} \log \relax (x)^{4} - 2 \, x \log \left (3 \, x + 2\right ) \log \relax (x)^{4} + \log \left (3 \, x + 2\right )^{2} \log \relax (x)^{4} + 12 \, x \log \relax (x)^{2} - 12 \, \log \left (3 \, x + 2\right ) \log \relax (x)^{2} - 5 \, x^{2} + 10 \, x \log \left (3 \, x + 2\right ) - 5 \, \log \left (3 \, x + 2\right )^{2} + 36\right ) - 2 \, \log \left (x - \log \left (3 \, x + 2\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((3*x^2+2*x)*log(x)^4+(12*x+8)*log(x)^3-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^4+(-36*x^2
-24*x)*log(x)^3+(-36*x^2-24*x)*log(x)^2+(-72*x-48)*log(x)+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+
(36*x^3+24*x^2)*log(x)^3+(72*x^3+12*x^2+12*x)*log(x)^2+(144*x^2+96*x)*log(x)-45*x^4-30*x^3+108*x^2+72*x)*log(3
*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-12*x^4-8*x^3)*log(x)^3+(-36*x^4+12*x^3-12*x^2)*log(x)^2+(-72*x^3-48*x^2)*log(x
)+15*x^5+10*x^4-108*x^3+144*x^2-72*x)/(((3*x^2+2*x)*log(x)^4-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^
4+(-36*x^2-24*x)*log(x)^2+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+(72*x^3+48*x^2)*log(x)^2-45*x^4-
30*x^3+108*x^2+72*x)*log(3*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-36*x^4-24*x^3)*log(x)^2+15*x^5+10*x^4-108*x^3-72*x^2
),x, algorithm="giac")

[Out]

x + log(x^2*log(x)^4 - 2*x*log(3*x + 2)*log(x)^4 + log(3*x + 2)^2*log(x)^4 + 12*x*log(x)^2 - 12*log(3*x + 2)*l
og(x)^2 - 5*x^2 + 10*x*log(3*x + 2) - 5*log(3*x + 2)^2 + 36) - 2*log(x - log(3*x + 2))

________________________________________________________________________________________

maple [B]  time = 0.09, size = 96, normalized size = 3.20




method result size



risch \(x +\ln \left (\ln \relax (x )^{4}-5\right )-2 \ln \left (-x +\ln \left (3 x +2\right )\right )+\ln \left (\ln \left (3 x +2\right )^{2}-\frac {2 \left (x \ln \relax (x )^{4}+6 \ln \relax (x )^{2}-5 x \right ) \ln \left (3 x +2\right )}{\ln \relax (x )^{4}-5}+\frac {x^{2} \ln \relax (x )^{4}+12 x \ln \relax (x )^{2}-5 x^{2}+36}{\ln \relax (x )^{4}-5}\right )\) \(96\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((3*x^2+2*x)*ln(x)^4+(12*x+8)*ln(x)^3-15*x^2-10*x)*ln(3*x+2)^3+((-9*x^3-6*x^2)*ln(x)^4+(-36*x^2-24*x)*ln(
x)^3+(-36*x^2-24*x)*ln(x)^2+(-72*x-48)*ln(x)+45*x^3+30*x^2)*ln(3*x+2)^2+((9*x^4+6*x^3)*ln(x)^4+(36*x^3+24*x^2)
*ln(x)^3+(72*x^3+12*x^2+12*x)*ln(x)^2+(144*x^2+96*x)*ln(x)-45*x^4-30*x^3+108*x^2+72*x)*ln(3*x+2)+(-3*x^5-2*x^4
)*ln(x)^4+(-12*x^4-8*x^3)*ln(x)^3+(-36*x^4+12*x^3-12*x^2)*ln(x)^2+(-72*x^3-48*x^2)*ln(x)+15*x^5+10*x^4-108*x^3
+144*x^2-72*x)/(((3*x^2+2*x)*ln(x)^4-15*x^2-10*x)*ln(3*x+2)^3+((-9*x^3-6*x^2)*ln(x)^4+(-36*x^2-24*x)*ln(x)^2+4
5*x^3+30*x^2)*ln(3*x+2)^2+((9*x^4+6*x^3)*ln(x)^4+(72*x^3+48*x^2)*ln(x)^2-45*x^4-30*x^3+108*x^2+72*x)*ln(3*x+2)
+(-3*x^5-2*x^4)*ln(x)^4+(-36*x^4-24*x^3)*ln(x)^2+15*x^5+10*x^4-108*x^3-72*x^2),x,method=_RETURNVERBOSE)

[Out]

x+ln(ln(x)^4-5)-2*ln(-x+ln(3*x+2))+ln(ln(3*x+2)^2-2*(x*ln(x)^4+6*ln(x)^2-5*x)/(ln(x)^4-5)*ln(3*x+2)+(x^2*ln(x)
^4+12*x*ln(x)^2-5*x^2+36)/(ln(x)^4-5))

________________________________________________________________________________________

maxima [B]  time = 0.56, size = 93, normalized size = 3.10 \begin {gather*} x + \log \left (\log \relax (x)^{4} - 5\right ) - 2 \, \log \left (-x + \log \left (3 \, x + 2\right )\right ) + \log \left (\frac {x^{2} \log \relax (x)^{4} + {\left (\log \relax (x)^{4} - 5\right )} \log \left (3 \, x + 2\right )^{2} + 12 \, x \log \relax (x)^{2} - 5 \, x^{2} - 2 \, {\left (x \log \relax (x)^{4} + 6 \, \log \relax (x)^{2} - 5 \, x\right )} \log \left (3 \, x + 2\right ) + 36}{\log \relax (x)^{4} - 5}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((3*x^2+2*x)*log(x)^4+(12*x+8)*log(x)^3-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^4+(-36*x^2
-24*x)*log(x)^3+(-36*x^2-24*x)*log(x)^2+(-72*x-48)*log(x)+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+
(36*x^3+24*x^2)*log(x)^3+(72*x^3+12*x^2+12*x)*log(x)^2+(144*x^2+96*x)*log(x)-45*x^4-30*x^3+108*x^2+72*x)*log(3
*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-12*x^4-8*x^3)*log(x)^3+(-36*x^4+12*x^3-12*x^2)*log(x)^2+(-72*x^3-48*x^2)*log(x
)+15*x^5+10*x^4-108*x^3+144*x^2-72*x)/(((3*x^2+2*x)*log(x)^4-15*x^2-10*x)*log(3*x+2)^3+((-9*x^3-6*x^2)*log(x)^
4+(-36*x^2-24*x)*log(x)^2+45*x^3+30*x^2)*log(3*x+2)^2+((9*x^4+6*x^3)*log(x)^4+(72*x^3+48*x^2)*log(x)^2-45*x^4-
30*x^3+108*x^2+72*x)*log(3*x+2)+(-3*x^5-2*x^4)*log(x)^4+(-36*x^4-24*x^3)*log(x)^2+15*x^5+10*x^4-108*x^3-72*x^2
),x, algorithm="maxima")

[Out]

x + log(log(x)^4 - 5) - 2*log(-x + log(3*x + 2)) + log((x^2*log(x)^4 + (log(x)^4 - 5)*log(3*x + 2)^2 + 12*x*lo
g(x)^2 - 5*x^2 - 2*(x*log(x)^4 + 6*log(x)^2 - 5*x)*log(3*x + 2) + 36)/(log(x)^4 - 5))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {72\,x+\ln \relax (x)\,\left (72\,x^3+48\,x^2\right )+{\ln \left (3\,x+2\right )}^2\,\left ({\ln \relax (x)}^2\,\left (36\,x^2+24\,x\right )+{\ln \relax (x)}^3\,\left (36\,x^2+24\,x\right )+{\ln \relax (x)}^4\,\left (9\,x^3+6\,x^2\right )+\ln \relax (x)\,\left (72\,x+48\right )-30\,x^2-45\,x^3\right )+{\ln \relax (x)}^4\,\left (3\,x^5+2\,x^4\right )+{\ln \relax (x)}^3\,\left (12\,x^4+8\,x^3\right )+{\ln \relax (x)}^2\,\left (36\,x^4-12\,x^3+12\,x^2\right )-\ln \left (3\,x+2\right )\,\left (72\,x+{\ln \relax (x)}^2\,\left (72\,x^3+12\,x^2+12\,x\right )+{\ln \relax (x)}^4\,\left (9\,x^4+6\,x^3\right )+{\ln \relax (x)}^3\,\left (36\,x^3+24\,x^2\right )+\ln \relax (x)\,\left (144\,x^2+96\,x\right )+108\,x^2-30\,x^3-45\,x^4\right )+{\ln \left (3\,x+2\right )}^3\,\left (10\,x-{\ln \relax (x)}^4\,\left (3\,x^2+2\,x\right )+15\,x^2-{\ln \relax (x)}^3\,\left (12\,x+8\right )\right )-144\,x^2+108\,x^3-10\,x^4-15\,x^5}{{\ln \relax (x)}^4\,\left (3\,x^5+2\,x^4\right )+{\ln \relax (x)}^2\,\left (36\,x^4+24\,x^3\right )+{\ln \left (3\,x+2\right )}^2\,\left ({\ln \relax (x)}^2\,\left (36\,x^2+24\,x\right )+{\ln \relax (x)}^4\,\left (9\,x^3+6\,x^2\right )-30\,x^2-45\,x^3\right )-\ln \left (3\,x+2\right )\,\left (72\,x+{\ln \relax (x)}^4\,\left (9\,x^4+6\,x^3\right )+{\ln \relax (x)}^2\,\left (72\,x^3+48\,x^2\right )+108\,x^2-30\,x^3-45\,x^4\right )+72\,x^2+108\,x^3-10\,x^4-15\,x^5+{\ln \left (3\,x+2\right )}^3\,\left (10\,x-{\ln \relax (x)}^4\,\left (3\,x^2+2\,x\right )+15\,x^2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((72*x + log(x)*(48*x^2 + 72*x^3) + log(3*x + 2)^2*(log(x)^2*(24*x + 36*x^2) + log(x)^3*(24*x + 36*x^2) + l
og(x)^4*(6*x^2 + 9*x^3) + log(x)*(72*x + 48) - 30*x^2 - 45*x^3) + log(x)^4*(2*x^4 + 3*x^5) + log(x)^3*(8*x^3 +
 12*x^4) + log(x)^2*(12*x^2 - 12*x^3 + 36*x^4) - log(3*x + 2)*(72*x + log(x)^2*(12*x + 12*x^2 + 72*x^3) + log(
x)^4*(6*x^3 + 9*x^4) + log(x)^3*(24*x^2 + 36*x^3) + log(x)*(96*x + 144*x^2) + 108*x^2 - 30*x^3 - 45*x^4) + log
(3*x + 2)^3*(10*x - log(x)^4*(2*x + 3*x^2) + 15*x^2 - log(x)^3*(12*x + 8)) - 144*x^2 + 108*x^3 - 10*x^4 - 15*x
^5)/(log(x)^4*(2*x^4 + 3*x^5) + log(x)^2*(24*x^3 + 36*x^4) + log(3*x + 2)^2*(log(x)^2*(24*x + 36*x^2) + log(x)
^4*(6*x^2 + 9*x^3) - 30*x^2 - 45*x^3) - log(3*x + 2)*(72*x + log(x)^4*(6*x^3 + 9*x^4) + log(x)^2*(48*x^2 + 72*
x^3) + 108*x^2 - 30*x^3 - 45*x^4) + 72*x^2 + 108*x^3 - 10*x^4 - 15*x^5 + log(3*x + 2)^3*(10*x - log(x)^4*(2*x
+ 3*x^2) + 15*x^2)),x)

[Out]

int((72*x + log(x)*(48*x^2 + 72*x^3) + log(3*x + 2)^2*(log(x)^2*(24*x + 36*x^2) + log(x)^3*(24*x + 36*x^2) + l
og(x)^4*(6*x^2 + 9*x^3) + log(x)*(72*x + 48) - 30*x^2 - 45*x^3) + log(x)^4*(2*x^4 + 3*x^5) + log(x)^3*(8*x^3 +
 12*x^4) + log(x)^2*(12*x^2 - 12*x^3 + 36*x^4) - log(3*x + 2)*(72*x + log(x)^2*(12*x + 12*x^2 + 72*x^3) + log(
x)^4*(6*x^3 + 9*x^4) + log(x)^3*(24*x^2 + 36*x^3) + log(x)*(96*x + 144*x^2) + 108*x^2 - 30*x^3 - 45*x^4) + log
(3*x + 2)^3*(10*x - log(x)^4*(2*x + 3*x^2) + 15*x^2 - log(x)^3*(12*x + 8)) - 144*x^2 + 108*x^3 - 10*x^4 - 15*x
^5)/(log(x)^4*(2*x^4 + 3*x^5) + log(x)^2*(24*x^3 + 36*x^4) + log(3*x + 2)^2*(log(x)^2*(24*x + 36*x^2) + log(x)
^4*(6*x^2 + 9*x^3) - 30*x^2 - 45*x^3) - log(3*x + 2)*(72*x + log(x)^4*(6*x^3 + 9*x^4) + log(x)^2*(48*x^2 + 72*
x^3) + 108*x^2 - 30*x^3 - 45*x^4) + 72*x^2 + 108*x^3 - 10*x^4 - 15*x^5 + log(3*x + 2)^3*(10*x - log(x)^4*(2*x
+ 3*x^2) + 15*x^2)), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((3*x**2+2*x)*ln(x)**4+(12*x+8)*ln(x)**3-15*x**2-10*x)*ln(3*x+2)**3+((-9*x**3-6*x**2)*ln(x)**4+(-36
*x**2-24*x)*ln(x)**3+(-36*x**2-24*x)*ln(x)**2+(-72*x-48)*ln(x)+45*x**3+30*x**2)*ln(3*x+2)**2+((9*x**4+6*x**3)*
ln(x)**4+(36*x**3+24*x**2)*ln(x)**3+(72*x**3+12*x**2+12*x)*ln(x)**2+(144*x**2+96*x)*ln(x)-45*x**4-30*x**3+108*
x**2+72*x)*ln(3*x+2)+(-3*x**5-2*x**4)*ln(x)**4+(-12*x**4-8*x**3)*ln(x)**3+(-36*x**4+12*x**3-12*x**2)*ln(x)**2+
(-72*x**3-48*x**2)*ln(x)+15*x**5+10*x**4-108*x**3+144*x**2-72*x)/(((3*x**2+2*x)*ln(x)**4-15*x**2-10*x)*ln(3*x+
2)**3+((-9*x**3-6*x**2)*ln(x)**4+(-36*x**2-24*x)*ln(x)**2+45*x**3+30*x**2)*ln(3*x+2)**2+((9*x**4+6*x**3)*ln(x)
**4+(72*x**3+48*x**2)*ln(x)**2-45*x**4-30*x**3+108*x**2+72*x)*ln(3*x+2)+(-3*x**5-2*x**4)*ln(x)**4+(-36*x**4-24
*x**3)*ln(x)**2+15*x**5+10*x**4-108*x**3-72*x**2),x)

[Out]

Exception raised: PolynomialError

________________________________________________________________________________________