Optimal. Leaf size=18 \[ 36 \left (-3+e^{2 x} (12+\log (5 x))^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (864+10368 x)+e^{2 x} (72+1728 x) \log (5 x)+72 e^{2 x} x \log ^2(5 x)}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (10368 e^{2 x}+\frac {864 e^{2 x}}{x}+1728 e^{2 x} \log (5 x)+\frac {72 e^{2 x} \log (5 x)}{x}+72 e^{2 x} \log ^2(5 x)\right ) \, dx\\ &=72 \int \frac {e^{2 x} \log (5 x)}{x} \, dx+72 \int e^{2 x} \log ^2(5 x) \, dx+864 \int \frac {e^{2 x}}{x} \, dx+1728 \int e^{2 x} \log (5 x) \, dx+10368 \int e^{2 x} \, dx\\ &=5184 e^{2 x}+864 \text {Ei}(2 x)+864 e^{2 x} \log (5 x)+72 \text {Ei}(2 x) \log (5 x)-72 \int \frac {\text {Ei}(2 x)}{x} \, dx+72 \int e^{2 x} \log ^2(5 x) \, dx-1728 \int \frac {e^{2 x}}{2 x} \, dx\\ &=5184 e^{2 x}+864 \text {Ei}(2 x)-72 (E_1(-2 x)+\text {Ei}(2 x)) \log (x)+864 e^{2 x} \log (5 x)+72 \text {Ei}(2 x) \log (5 x)+72 \int \frac {E_1(-2 x)}{x} \, dx+72 \int e^{2 x} \log ^2(5 x) \, dx-864 \int \frac {e^{2 x}}{x} \, dx\\ &=5184 e^{2 x}-144 x \, _3F_3(1,1,1;2,2,2;2 x)-36 \log ^2(-2 x)-72 \gamma \log (x)-72 (E_1(-2 x)+\text {Ei}(2 x)) \log (x)+864 e^{2 x} \log (5 x)+72 \text {Ei}(2 x) \log (5 x)+72 \int e^{2 x} \log ^2(5 x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 15, normalized size = 0.83 \begin {gather*} 36 e^{2 x} (12+\log (5 x))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 29, normalized size = 1.61 \begin {gather*} 36 \, e^{\left (2 \, x\right )} \log \left (5 \, x\right )^{2} + 864 \, e^{\left (2 \, x\right )} \log \left (5 \, x\right ) + 5184 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 29, normalized size = 1.61 \begin {gather*} 36 \, e^{\left (2 \, x\right )} \log \left (5 \, x\right )^{2} + 864 \, e^{\left (2 \, x\right )} \log \left (5 \, x\right ) + 5184 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.67
method | result | size |
norman | \(5184 \,{\mathrm e}^{2 x}+864 \,{\mathrm e}^{2 x} \ln \left (5 x \right )+36 \,{\mathrm e}^{2 x} \ln \left (5 x \right )^{2}\) | \(30\) |
risch | \(5184 \,{\mathrm e}^{2 x}+864 \,{\mathrm e}^{2 x} \ln \left (5 x \right )+36 \,{\mathrm e}^{2 x} \ln \left (5 x \right )^{2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 38, normalized size = 2.11 \begin {gather*} 36 \, {\left (\log \relax (5)^{2} + 2 \, \log \relax (5) \log \relax (x) + \log \relax (x)^{2}\right )} e^{\left (2 \, x\right )} + 864 \, e^{\left (2 \, x\right )} \log \left (5 \, x\right ) + 5184 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.13, size = 14, normalized size = 0.78 \begin {gather*} 36\,{\mathrm {e}}^{2\,x}\,{\left (\ln \left (5\,x\right )+12\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 20, normalized size = 1.11 \begin {gather*} \left (36 \log {\left (5 x \right )}^{2} + 864 \log {\left (5 x \right )} + 5184\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________