Optimal. Leaf size=27 \[ e^{4/x}-x-\log (3)+(2-\log (3)) \log (x)+\log (\log (3)) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.74, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {6, 14, 2209, 43} \begin {gather*} -x+e^{4/x}+(2-\log (3)) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 43
Rule 2209
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 e^{4/x}-x^2+x (2-\log (3))}{x^2} \, dx\\ &=\int \left (-\frac {4 e^{4/x}}{x^2}+\frac {2-x-\log (3)}{x}\right ) \, dx\\ &=-\left (4 \int \frac {e^{4/x}}{x^2} \, dx\right )+\int \frac {2-x-\log (3)}{x} \, dx\\ &=e^{4/x}+\int \left (-1+\frac {2-\log (3)}{x}\right ) \, dx\\ &=e^{4/x}-x+(2-\log (3)) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.78 \begin {gather*} e^{4/x}-x+2 \log (x)-\log (3) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 18, normalized size = 0.67 \begin {gather*} -{\left (\log \relax (3) - 2\right )} \log \relax (x) - x + e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.37 \begin {gather*} x {\left (\frac {\log \relax (3) \log \left (\frac {4}{x}\right )}{x} + \frac {e^{\frac {4}{x}}}{x} - \frac {2 \, \log \left (\frac {4}{x}\right )}{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.78
method | result | size |
risch | \(-x -\ln \relax (3) \ln \relax (x )+2 \ln \relax (x )+{\mathrm e}^{\frac {4}{x}}\) | \(21\) |
derivativedivides | \(-x +\ln \relax (3) \ln \left (\frac {1}{x}\right )-2 \ln \left (\frac {1}{x}\right )+{\mathrm e}^{\frac {4}{x}}\) | \(24\) |
default | \(-x +\ln \relax (3) \ln \left (\frac {1}{x}\right )-2 \ln \left (\frac {1}{x}\right )+{\mathrm e}^{\frac {4}{x}}\) | \(24\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {4}{x}}-x^{2}}{x}+\left (2-\ln \relax (3)\right ) \ln \relax (x )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 20, normalized size = 0.74 \begin {gather*} -\log \relax (3) \log \relax (x) - x + e^{\frac {4}{x}} + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.78, size = 29, normalized size = 1.07 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{4/x}-x^3}{x^2}-\ln \relax (x)\,\left (\ln \relax (3)-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.52 \begin {gather*} - x + e^{\frac {4}{x}} - \left (-2 + \log {\relax (3 )}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________