Optimal. Leaf size=21 \[ \frac {\left (-20-e^{-4+x}\right ) (-3+x)}{x \log (\log (4))} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 38, normalized size of antiderivative = 1.81, number of steps used = 9, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {12, 14, 2199, 2194, 2177, 2178} \begin {gather*} -\frac {e^{x-4}}{\log (\log (4))}+\frac {3 e^{x-4}}{x \log (\log (4))}+\frac {60}{x \log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-60+e^{-4+x} \left (-3+3 x-x^2\right )}{x^2} \, dx}{\log (\log (4))}\\ &=\frac {\int \left (-\frac {60}{x^2}-\frac {e^{-4+x} \left (3-3 x+x^2\right )}{x^2}\right ) \, dx}{\log (\log (4))}\\ &=\frac {60}{x \log (\log (4))}-\frac {\int \frac {e^{-4+x} \left (3-3 x+x^2\right )}{x^2} \, dx}{\log (\log (4))}\\ &=\frac {60}{x \log (\log (4))}-\frac {\int \left (e^{-4+x}+\frac {3 e^{-4+x}}{x^2}-\frac {3 e^{-4+x}}{x}\right ) \, dx}{\log (\log (4))}\\ &=\frac {60}{x \log (\log (4))}-\frac {\int e^{-4+x} \, dx}{\log (\log (4))}-\frac {3 \int \frac {e^{-4+x}}{x^2} \, dx}{\log (\log (4))}+\frac {3 \int \frac {e^{-4+x}}{x} \, dx}{\log (\log (4))}\\ &=-\frac {e^{-4+x}}{\log (\log (4))}+\frac {60}{x \log (\log (4))}+\frac {3 e^{-4+x}}{x \log (\log (4))}+\frac {3 \text {Ei}(x)}{e^4 \log (\log (4))}-\frac {3 \int \frac {e^{-4+x}}{x} \, dx}{\log (\log (4))}\\ &=-\frac {e^{-4+x}}{\log (\log (4))}+\frac {60}{x \log (\log (4))}+\frac {3 e^{-4+x}}{x \log (\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 21, normalized size = 1.00 \begin {gather*} -\frac {-60+e^{-4+x} (-3+x)}{x \log (\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 22, normalized size = 1.05 \begin {gather*} -\frac {{\left (x - 3\right )} e^{\left (x - 4\right )} - 60}{x \log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 27, normalized size = 1.29 \begin {gather*} -\frac {{\left (x e^{x} - 60 \, e^{4} - 3 \, e^{x}\right )} e^{\left (-4\right )}}{x \log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 30, normalized size = 1.43
method | result | size |
derivativedivides | \(\frac {\frac {60}{x}+\frac {3 \,{\mathrm e}^{x -4}}{x}-{\mathrm e}^{x -4}}{\ln \left (2 \ln \relax (2)\right )}\) | \(30\) |
default | \(\frac {\frac {60}{x}+\frac {3 \,{\mathrm e}^{x -4}}{x}-{\mathrm e}^{x -4}}{\ln \left (2 \ln \relax (2)\right )}\) | \(30\) |
risch | \(\frac {60}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) x}-\frac {\left (x -3\right ) {\mathrm e}^{x -4}}{\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) x}\) | \(35\) |
norman | \(\frac {\frac {60}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}+\frac {3 \,{\mathrm e}^{x -4}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}-\frac {x \,{\mathrm e}^{x -4}}{\ln \relax (2)+\ln \left (\ln \relax (2)\right )}}{x}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 35, normalized size = 1.67 \begin {gather*} \frac {3 \, {\rm Ei}\relax (x) e^{\left (-4\right )} - 3 \, e^{\left (-4\right )} \Gamma \left (-1, -x\right ) + \frac {60}{x} - e^{\left (x - 4\right )}}{\log \left (2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.66, size = 24, normalized size = 1.14 \begin {gather*} \frac {3\,{\mathrm {e}}^{x-4}-x\,{\mathrm {e}}^{x-4}+60}{x\,\ln \left (\ln \relax (4)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 31, normalized size = 1.48 \begin {gather*} \frac {\left (3 - x\right ) e^{x - 4}}{x \log {\left (\log {\relax (2 )} \right )} + x \log {\relax (2 )}} + \frac {60}{x \left (\log {\left (\log {\relax (2 )} \right )} + \log {\relax (2 )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________