Optimal. Leaf size=26 \[ e^{x \left (-1+\frac {2 \left (e^{\frac {5 e^5}{x}}+\log (2 x)\right )}{x^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.11, antiderivative size = 39, normalized size of antiderivative = 1.50, number of steps used = 1, number of rules used = 1, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6706} \begin {gather*} 2^{2/x} e^{\frac {2 e^{\frac {5 e^5}{x}}-x^2}{x}} x^{2/x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2^{2/x} e^{\frac {2 e^{\frac {5 e^5}{x}}-x^2}{x}} x^{2/x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.80, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {2 e^{\frac {5 e^5}{x}}-x^2+2 \log (2 x)}{x}} \left (e^{\frac {5 e^5}{x}} \left (-10 e^5-2 x\right )+2 x-x^3-2 x \log (2 x)\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 26, normalized size = 1.00 \begin {gather*} e^{\left (-\frac {x^{2} - 2 \, e^{\left (\frac {5 \, e^{5}}{x}\right )} - 2 \, \log \left (2 \, x\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 27, normalized size = 1.04 \begin {gather*} e^{\left (-x + \frac {2 \, e^{\left (\frac {5 \, e^{5}}{x}\right )}}{x} + \frac {2 \, \log \left (2 \, x\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 28, normalized size = 1.08
method | result | size |
risch | \({\mathrm e}^{\frac {2 \ln \left (2 x \right )+2 \,{\mathrm e}^{\frac {5 \,{\mathrm e}^{5}}{x}}-x^{2}}{x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 32, normalized size = 1.23 \begin {gather*} e^{\left (-x + \frac {2 \, e^{\left (\frac {5 \, e^{5}}{x}\right )}}{x} + \frac {2 \, \log \relax (2)}{x} + \frac {2 \, \log \relax (x)}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.76, size = 33, normalized size = 1.27 \begin {gather*} 2^{2/x}\,x^{2/x}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^5}{x}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 22, normalized size = 0.85 \begin {gather*} e^{\frac {- x^{2} + 2 e^{\frac {5 e^{5}}{x}} + 2 \log {\left (2 x \right )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________