Optimal. Leaf size=26 \[ x^2-\frac {1}{10} e^{2-2 e^x} x \left (-4+\log ^2(6 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{10} e^{2-2 e^x} \left (4+20 e^{-2+2 e^x} x-8 e^x x-2 \log (6 x)+\left (-1+2 e^x x\right ) \log ^2(6 x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{10} \int e^{2-2 e^x} \left (4+20 e^{-2+2 e^x} x-8 e^x x-2 \log (6 x)+\left (-1+2 e^x x\right ) \log ^2(6 x)\right ) \, dx\\ &=\frac {1}{10} \int e^{-2 \left (-1+e^x\right )} \left (4+20 e^{-2+2 e^x} x-8 e^x x-2 \log (6 x)+\left (-1+2 e^x x\right ) \log ^2(6 x)\right ) \, dx\\ &=\frac {1}{10} \int \left (4 e^{-2 \left (-1+e^x\right )}+20 x-8 e^{-2 \left (-1+e^x\right )+x} x-2 e^{-2 \left (-1+e^x\right )} \log (6 x)+e^{-2 \left (-1+e^x\right )} \left (-1+2 e^x x\right ) \log ^2(6 x)\right ) \, dx\\ &=x^2+\frac {1}{10} \int e^{-2 \left (-1+e^x\right )} \left (-1+2 e^x x\right ) \log ^2(6 x) \, dx-\frac {1}{5} \int e^{-2 \left (-1+e^x\right )} \log (6 x) \, dx+\frac {2}{5} \int e^{-2 \left (-1+e^x\right )} \, dx-\frac {4}{5} \int e^{-2 \left (-1+e^x\right )+x} x \, dx\\ &=x^2-\frac {1}{5} e^2 \text {Ei}\left (-2 e^x\right ) \log (6 x)+\frac {1}{10} \int \left (-e^{-2 \left (-1+e^x\right )} \log ^2(6 x)+2 e^{-2 \left (-1+e^x\right )+x} x \log ^2(6 x)\right ) \, dx+\frac {1}{5} \int \frac {e^2 \text {Ei}\left (-2 e^x\right )}{x} \, dx+\frac {2}{5} \operatorname {Subst}\left (\int \frac {e^{2-2 x}}{x} \, dx,x,e^x\right )-\frac {4}{5} \int e^{-2 \left (-1+e^x\right )+x} x \, dx\\ &=x^2+\frac {2}{5} e^2 \text {Ei}\left (-2 e^x\right )-\frac {1}{5} e^2 \text {Ei}\left (-2 e^x\right ) \log (6 x)-\frac {1}{10} \int e^{-2 \left (-1+e^x\right )} \log ^2(6 x) \, dx+\frac {1}{5} \int e^{-2 \left (-1+e^x\right )+x} x \log ^2(6 x) \, dx-\frac {4}{5} \int e^{-2 \left (-1+e^x\right )+x} x \, dx+\frac {1}{5} e^2 \int \frac {\text {Ei}\left (-2 e^x\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.50, size = 39, normalized size = 1.50 \begin {gather*} \frac {1}{10} e^{-2 e^x} x \left (4 e^2+10 e^{2 e^x} x-e^2 \log ^2(6 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 34, normalized size = 1.31 \begin {gather*} \frac {1}{10} \, {\left (10 \, x^{2} e^{\left (2 \, e^{x} - 2\right )} - x \log \left (6 \, x\right )^{2} + 4 \, x\right )} e^{\left (-2 \, e^{x} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 68, normalized size = 2.62 \begin {gather*} -\frac {1}{10} \, {\left (x e^{\left (x - 2 \, e^{x} + 2\right )} \log \relax (6)^{2} + 2 \, x e^{\left (x - 2 \, e^{x} + 2\right )} \log \relax (6) \log \relax (x) + x e^{\left (x - 2 \, e^{x} + 2\right )} \log \relax (x)^{2} - 10 \, x^{2} e^{x} - 4 \, x e^{\left (x - 2 \, e^{x} + 2\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 27, normalized size = 1.04
method | result | size |
risch | \(x^{2}+\frac {\left (-x \ln \left (6 x \right )^{2}+4 x \right ) {\mathrm e}^{-2 \,{\mathrm e}^{x}+2}}{10}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} + \frac {2}{5} \, {\rm Ei}\left (-2 \, e^{x}\right ) e^{2} - \frac {1}{10} \, {\left (2 \, x {\left (\log \relax (3) + \log \relax (2)\right )} e^{2} \log \relax (x) + x e^{2} \log \relax (x)^{2} + {\left (\log \relax (3)^{2} + 2 \, \log \relax (3) \log \relax (2) + \log \relax (2)^{2} - 4\right )} x e^{2}\right )} e^{\left (-2 \, e^{x}\right )} - \frac {2}{5} \, \int e^{\left (-2 \, e^{x} + 2\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.32, size = 25, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{2-2\,{\mathrm {e}}^x}\,\left (\frac {2\,x}{5}-\frac {x\,{\ln \left (6\,x\right )}^2}{10}\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.26, size = 24, normalized size = 0.92 \begin {gather*} x^{2} + \frac {\left (- x \log {\left (6 x \right )}^{2} + 4 x\right ) e^{2 - 2 e^{x}}}{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________