Optimal. Leaf size=14 \[ x+\frac {x \log (-4+x)}{\log \left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(8-2 x) \log (-4+x)+(x+(-4+x) \log (-4+x)) \log \left (x^2\right )+(-4+x) \log ^2\left (x^2\right )}{(-4+x) \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (-4+x) \left (-2+\log \left (x^2\right )\right )+\log \left (x^2\right ) \left (\frac {x}{-4+x}+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )} \, dx\\ &=\int \left (1-\frac {2 \log (-4+x)}{\log ^2\left (x^2\right )}+\frac {x-4 \log (-4+x)+x \log (-4+x)}{(-4+x) \log \left (x^2\right )}\right ) \, dx\\ &=x-2 \int \frac {\log (-4+x)}{\log ^2\left (x^2\right )} \, dx+\int \frac {x-4 \log (-4+x)+x \log (-4+x)}{(-4+x) \log \left (x^2\right )} \, dx\\ &=x-2 \int \frac {\log (-4+x)}{\log ^2\left (x^2\right )} \, dx+\int \left (\frac {x}{(-4+x) \log \left (x^2\right )}-\frac {4 \log (-4+x)}{(-4+x) \log \left (x^2\right )}+\frac {x \log (-4+x)}{(-4+x) \log \left (x^2\right )}\right ) \, dx\\ &=x-2 \int \frac {\log (-4+x)}{\log ^2\left (x^2\right )} \, dx-4 \int \frac {\log (-4+x)}{(-4+x) \log \left (x^2\right )} \, dx+\int \frac {x}{(-4+x) \log \left (x^2\right )} \, dx+\int \frac {x \log (-4+x)}{(-4+x) \log \left (x^2\right )} \, dx\\ &=x-2 \int \frac {\log (-4+x)}{\log ^2\left (x^2\right )} \, dx-4 \int \frac {\log (-4+x)}{(-4+x) \log \left (x^2\right )} \, dx+\int \left (\frac {\log (-4+x)}{\log \left (x^2\right )}+\frac {4 \log (-4+x)}{(-4+x) \log \left (x^2\right )}\right ) \, dx+\int \frac {x}{(-4+x) \log \left (x^2\right )} \, dx\\ &=x-2 \int \frac {\log (-4+x)}{\log ^2\left (x^2\right )} \, dx+\int \frac {x}{(-4+x) \log \left (x^2\right )} \, dx+\int \frac {\log (-4+x)}{\log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 14, normalized size = 1.00 \begin {gather*} x+\frac {x \log (-4+x)}{\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 20, normalized size = 1.43 \begin {gather*} \frac {x \log \left (x^{2}\right ) + x \log \left (x - 4\right )}{\log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 14, normalized size = 1.00 \begin {gather*} x + \frac {x \log \left (x - 4\right )}{\log \left (x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 1.50
method | result | size |
norman | \(\frac {x \ln \left (x^{2}\right )+x \ln \left (x -4\right )}{\ln \left (x^{2}\right )}\) | \(21\) |
risch | \(\frac {2 i x \ln \left (x -4\right )}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )}+x\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 18, normalized size = 1.29 \begin {gather*} \frac {x \log \left (x - 4\right ) + 2 \, x \log \relax (x)}{2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.33, size = 60, normalized size = 4.29 \begin {gather*} \frac {3\,x}{2}+\frac {x\,\ln \left (x-4\right )}{2}+\frac {8}{x-4}+\frac {x\,\ln \left (x-4\right )-\frac {x\,\ln \left (x^2\right )\,\left (x-4\,\ln \left (x-4\right )+x\,\ln \left (x-4\right )\right )}{2\,\left (x-4\right )}}{\ln \left (x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 12, normalized size = 0.86 \begin {gather*} x + \frac {x \log {\left (x - 4 \right )}}{\log {\left (x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________