Optimal. Leaf size=31 \[ 3+e^{1-\left (5+e^{\frac {8 e^{-x}}{x}}-x\right )^2}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 11.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (-e^x x+\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+10 x-x^2+e^{\frac {8 e^{-x}}{x}} (-10+2 x)\right ) \left (e^{\frac {16 e^{-x}}{x}} (16+16 x)+e^{\frac {8 e^{-x}}{x}} \left (80+64 x-16 x^2+2 e^x x^2\right )+e^x \left (10 x^2-2 x^3\right )\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-x+2 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) \left (e^x x^2+8 e^{\frac {8 e^{-x}}{x}} (1+x)\right )}{x^2} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {2 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) \left (8 e^{\frac {8 e^{-x}}{x}}+8 e^{\frac {8 e^{-x}}{x}} x+e^x x^2\right )}{x^2}\right ) \, dx\\ &=-\log (x)+2 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) \left (8 e^{\frac {8 e^{-x}}{x}}+8 e^{\frac {8 e^{-x}}{x}} x+e^x x^2\right )}{x^2} \, dx\\ &=-\log (x)+2 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) \left (e^x x^2+8 e^{\frac {8 e^{-x}}{x}} (1+x)\right )}{x^2} \, dx\\ &=-\log (x)+2 \int \left (\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right )+\frac {8 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) (1+x)}{x^2}\right ) \, dx\\ &=-\log (x)+2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) \, dx+16 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right ) \left (5+e^{\frac {8 e^{-x}}{x}}-x\right ) (1+x)}{x^2} \, dx\\ &=-\log (x)+2 \int \left (5 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right )+\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+10 x-x^2\right )-\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) x\right ) \, dx+16 \int \left (\frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right ) (1+x)}{x^2}-\frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right ) (-5+x) (1+x)}{x^2}\right ) \, dx\\ &=-\log (x)+2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+10 x-x^2\right ) \, dx-2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) x \, dx+10 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) \, dx+16 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right ) (1+x)}{x^2} \, dx-16 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right ) (-5+x) (1+x)}{x^2} \, dx\\ &=-\log (x)+2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+10 x-x^2\right ) \, dx-2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) x \, dx+10 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) \, dx-16 \int \left (\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right )-\frac {5 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right )}{x^2}-\frac {4 \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right )}{x}\right ) \, dx+16 \int \left (\frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right )}{x^2}+\frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right )}{x}\right ) \, dx\\ &=-\log (x)+2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+10 x-x^2\right ) \, dx-2 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) x \, dx+10 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2\right ) \, dx-16 \int \exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right ) \, dx+16 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right )}{x^2} \, dx+16 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {16 e^{-x}}{x}+9 x-x^2\right )}{x} \, dx+64 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right )}{x} \, dx+80 \int \frac {\exp \left (-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+\frac {8 e^{-x}}{x}+9 x-x^2\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 48, normalized size = 1.55 \begin {gather*} e^{-24-e^{\frac {16 e^{-x}}{x}}+2 e^{\frac {8 e^{-x}}{x}} (-5+x)+10 x-x^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 43, normalized size = 1.39 \begin {gather*} e^{\left (-x^{2} + 2 \, {\left (x - 5\right )} e^{\left (\frac {8 \, e^{\left (-x\right )}}{x}\right )} + 10 \, x - e^{\left (\frac {16 \, e^{\left (-x\right )}}{x}\right )} - 24\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, {\left ({\left (x^{3} - 5 \, x^{2}\right )} e^{x} - 8 \, {\left (x + 1\right )} e^{\left (\frac {16 \, e^{\left (-x\right )}}{x}\right )} - {\left (x^{2} e^{x} - 8 \, x^{2} + 32 \, x + 40\right )} e^{\left (\frac {8 \, e^{\left (-x\right )}}{x}\right )}\right )} e^{\left (-x^{2} + 2 \, {\left (x - 5\right )} e^{\left (\frac {8 \, e^{\left (-x\right )}}{x}\right )} + 10 \, x - e^{\left (\frac {16 \, e^{\left (-x\right )}}{x}\right )} - 24\right )} + x e^{x}\right )} e^{\left (-x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 54, normalized size = 1.74
method | result | size |
risch | \(-\ln \relax (x )+{\mathrm e}^{2 \,{\mathrm e}^{\frac {8 \,{\mathrm e}^{-x}}{x}} x -x^{2}-{\mathrm e}^{\frac {16 \,{\mathrm e}^{-x}}{x}}-10 \,{\mathrm e}^{\frac {8 \,{\mathrm e}^{-x}}{x}}+10 x -24}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 53, normalized size = 1.71 \begin {gather*} e^{\left (-x^{2} + 2 \, x e^{\left (\frac {8 \, e^{\left (-x\right )}}{x}\right )} + 10 \, x - e^{\left (\frac {16 \, e^{\left (-x\right )}}{x}\right )} - 10 \, e^{\left (\frac {8 \, e^{\left (-x\right )}}{x}\right )} - 24\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.40, size = 58, normalized size = 1.87 \begin {gather*} {\mathrm {e}}^{2\,x\,{\mathrm {e}}^{\frac {8\,{\mathrm {e}}^{-x}}{x}}}\,{\mathrm {e}}^{10\,x}\,{\mathrm {e}}^{-24}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{-{\mathrm {e}}^{\frac {16\,{\mathrm {e}}^{-x}}{x}}}\,{\mathrm {e}}^{-10\,{\mathrm {e}}^{\frac {8\,{\mathrm {e}}^{-x}}{x}}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.75, size = 34, normalized size = 1.10 \begin {gather*} e^{- x^{2} + 10 x + \left (2 x - 10\right ) e^{\frac {8 e^{- x}}{x}} - e^{\frac {16 e^{- x}}{x}} - 24} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________