Optimal. Leaf size=16 \[ \left (6+e^x+\frac {3}{x^2}\right ) x^2 \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 21, normalized size of antiderivative = 1.31, number of steps used = 8, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {14, 2288, 2304} \begin {gather*} e^x x^2 \log (x)+6 x^2 \log (x)+3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x x (1+2 \log (x)+x \log (x))+\frac {3 \left (1+2 x^2+4 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=3 \int \frac {1+2 x^2+4 x^2 \log (x)}{x} \, dx+\int e^x x (1+2 \log (x)+x \log (x)) \, dx\\ &=e^x x^2 \log (x)+3 \int \left (\frac {1+2 x^2}{x}+4 x \log (x)\right ) \, dx\\ &=e^x x^2 \log (x)+3 \int \frac {1+2 x^2}{x} \, dx+12 \int x \log (x) \, dx\\ &=-3 x^2+6 x^2 \log (x)+e^x x^2 \log (x)+3 \int \left (\frac {1}{x}+2 x\right ) \, dx\\ &=3 \log (x)+6 x^2 \log (x)+e^x x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 0.88 \begin {gather*} \left (3+\left (6+e^x\right ) x^2\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 16, normalized size = 1.00 \begin {gather*} {\left (x^{2} e^{x} + 6 \, x^{2} + 3\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 20, normalized size = 1.25 \begin {gather*} x^{2} e^{x} \log \relax (x) + 6 \, x^{2} \log \relax (x) + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 1.31
method | result | size |
default | \(x^{2} {\mathrm e}^{x} \ln \relax (x )+6 x^{2} \ln \relax (x )+3 \ln \relax (x )\) | \(21\) |
norman | \(x^{2} {\mathrm e}^{x} \ln \relax (x )+6 x^{2} \ln \relax (x )+3 \ln \relax (x )\) | \(21\) |
risch | \(\left ({\mathrm e}^{x} x^{2}+6 x^{2}\right ) \ln \relax (x )+3 \ln \relax (x )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 32, normalized size = 2.00 \begin {gather*} 6 \, x^{2} \log \relax (x) + {\left (x^{2} \log \relax (x) - x + 1\right )} e^{x} + {\left (x - 1\right )} e^{x} + 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.22, size = 16, normalized size = 1.00 \begin {gather*} \ln \relax (x)\,\left (x^2\,{\mathrm {e}}^x+6\,x^2+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 1.38 \begin {gather*} x^{2} e^{x} \log {\relax (x )} + 6 x^{2} \log {\relax (x )} + 3 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________