Optimal. Leaf size=28 \[ -1+x-\frac {1}{25} \left (e^x+\frac {x}{25+\frac {x}{5 \log (x)}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 e^x x^2+25 x^3-2 e^{2 x} x^3+\left (9325 x^2-750 e^{2 x} x^2+e^x \left (-1250 x-10 x^3\right )\right ) \log (x)+\left (1171875 x-93750 e^{2 x} x+e^x \left (-1250 x-2500 x^2\right )\right ) \log ^2(x)+\left (48828125-3906250 e^{2 x}+e^x (-156250-156250 x)-6250 x\right ) \log ^3(x)}{25 x^3+9375 x^2 \log (x)+1171875 x \log ^2(x)+48828125 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10 e^x x^2+25 x^3-2 e^{2 x} x^3+\left (9325 x^2-750 e^{2 x} x^2+e^x \left (-1250 x-10 x^3\right )\right ) \log (x)+\left (1171875 x-93750 e^{2 x} x+e^x \left (-1250 x-2500 x^2\right )\right ) \log ^2(x)+\left (48828125-3906250 e^{2 x}+e^x (-156250-156250 x)-6250 x\right ) \log ^3(x)}{25 (x+125 \log (x))^3} \, dx\\ &=\frac {1}{25} \int \frac {-10 e^x x^2+25 x^3-2 e^{2 x} x^3+\left (9325 x^2-750 e^{2 x} x^2+e^x \left (-1250 x-10 x^3\right )\right ) \log (x)+\left (1171875 x-93750 e^{2 x} x+e^x \left (-1250 x-2500 x^2\right )\right ) \log ^2(x)+\left (48828125-3906250 e^{2 x}+e^x (-156250-156250 x)-6250 x\right ) \log ^3(x)}{(x+125 \log (x))^3} \, dx\\ &=\frac {1}{25} \int \left (-2 e^{2 x}+\frac {25 x^3}{(x+125 \log (x))^3}+\frac {9325 x^2 \log (x)}{(x+125 \log (x))^3}+\frac {1171875 x \log ^2(x)}{(x+125 \log (x))^3}+\frac {48828125 \log ^3(x)}{(x+125 \log (x))^3}-\frac {6250 x \log ^3(x)}{(x+125 \log (x))^3}-\frac {10 e^x \left (x+x^2 \log (x)+125 \log ^2(x)+125 x \log ^2(x)\right )}{(x+125 \log (x))^2}\right ) \, dx\\ &=-\left (\frac {2}{25} \int e^{2 x} \, dx\right )-\frac {2}{5} \int \frac {e^x \left (x+x^2 \log (x)+125 \log ^2(x)+125 x \log ^2(x)\right )}{(x+125 \log (x))^2} \, dx-250 \int \frac {x \log ^3(x)}{(x+125 \log (x))^3} \, dx+373 \int \frac {x^2 \log (x)}{(x+125 \log (x))^3} \, dx+46875 \int \frac {x \log ^2(x)}{(x+125 \log (x))^3} \, dx+1953125 \int \frac {\log ^3(x)}{(x+125 \log (x))^3} \, dx+\int \frac {x^3}{(x+125 \log (x))^3} \, dx\\ &=-\frac {e^{2 x}}{25}-\frac {2 e^x \left (x^2 \log (x)+125 x \log ^2(x)\right )}{5 (x+125 \log (x))^2}-250 \int \left (\frac {x}{1953125}-\frac {x^4}{1953125 (x+125 \log (x))^3}+\frac {3 x^3}{1953125 (x+125 \log (x))^2}-\frac {3 x^2}{1953125 (x+125 \log (x))}\right ) \, dx+373 \int \left (-\frac {x^3}{125 (x+125 \log (x))^3}+\frac {x^2}{125 (x+125 \log (x))^2}\right ) \, dx+46875 \int \left (\frac {x^3}{15625 (x+125 \log (x))^3}-\frac {2 x^2}{15625 (x+125 \log (x))^2}+\frac {x}{15625 (x+125 \log (x))}\right ) \, dx+1953125 \int \left (\frac {1}{1953125}-\frac {x^3}{1953125 (x+125 \log (x))^3}+\frac {3 x^2}{1953125 (x+125 \log (x))^2}-\frac {3 x}{1953125 (x+125 \log (x))}\right ) \, dx+\int \frac {x^3}{(x+125 \log (x))^3} \, dx\\ &=-\frac {e^{2 x}}{25}+x-\frac {x^2}{15625}-\frac {2 e^x \left (x^2 \log (x)+125 x \log ^2(x)\right )}{5 (x+125 \log (x))^2}+\frac {2 \int \frac {x^4}{(x+125 \log (x))^3} \, dx}{15625}-\frac {6 \int \frac {x^3}{(x+125 \log (x))^2} \, dx}{15625}+\frac {6 \int \frac {x^2}{x+125 \log (x)} \, dx}{15625}-\frac {373}{125} \int \frac {x^3}{(x+125 \log (x))^3} \, dx+\frac {373}{125} \int \frac {x^2}{(x+125 \log (x))^2} \, dx+3 \int \frac {x^3}{(x+125 \log (x))^3} \, dx+3 \int \frac {x^2}{(x+125 \log (x))^2} \, dx-6 \int \frac {x^2}{(x+125 \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.15, size = 59, normalized size = 2.11 \begin {gather*} \frac {-625 e^{2 x}+15625 x-50 e^x x-x^2-\frac {x^4}{(x+125 \log (x))^2}+\frac {2 x^2 \left (25 e^x+x\right )}{x+125 \log (x)}}{15625} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 81, normalized size = 2.89 \begin {gather*} \frac {25 \, x^{3} - x^{2} e^{\left (2 \, x\right )} - 25 \, {\left (x^{2} + 50 \, x e^{x} - 15625 \, x + 625 \, e^{\left (2 \, x\right )}\right )} \log \relax (x)^{2} - 10 \, {\left (x^{2} e^{x} - 625 \, x^{2} + 25 \, x e^{\left (2 \, x\right )}\right )} \log \relax (x)}{25 \, {\left (x^{2} + 250 \, x \log \relax (x) + 15625 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 93, normalized size = 3.32 \begin {gather*} -\frac {10 \, x^{2} e^{x} \log \relax (x) + 25 \, x^{2} \log \relax (x)^{2} + 1250 \, x e^{x} \log \relax (x)^{2} - 25 \, x^{3} + x^{2} e^{\left (2 \, x\right )} - 6250 \, x^{2} \log \relax (x) + 250 \, x e^{\left (2 \, x\right )} \log \relax (x) - 390625 \, x \log \relax (x)^{2} + 15625 \, e^{\left (2 \, x\right )} \log \relax (x)^{2}}{25 \, {\left (x^{2} + 250 \, x \log \relax (x) + 15625 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 52, normalized size = 1.86
method | result | size |
risch | \(-\frac {x^{2}}{15625}+x -\frac {{\mathrm e}^{2 x}}{25}-\frac {2 \,{\mathrm e}^{x} x}{625}+\frac {\left (x^{2}+50 \,{\mathrm e}^{x} x +250 x \ln \relax (x )+6250 \,{\mathrm e}^{x} \ln \relax (x )\right ) x^{2}}{15625 \left (125 \ln \relax (x )+x \right )^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 84, normalized size = 3.00 \begin {gather*} \frac {25 \, x^{3} + 6250 \, x^{2} \log \relax (x) - 25 \, {\left (x^{2} - 15625 \, x\right )} \log \relax (x)^{2} - {\left (x^{2} + 250 \, x \log \relax (x) + 15625 \, \log \relax (x)^{2}\right )} e^{\left (2 \, x\right )} - 10 \, {\left (x^{2} \log \relax (x) + 125 \, x \log \relax (x)^{2}\right )} e^{x}}{25 \, {\left (x^{2} + 250 \, x \log \relax (x) + 15625 \, \log \relax (x)^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.22, size = 547, normalized size = 19.54 \begin {gather*} \frac {24\,x}{25}-\frac {{\mathrm {e}}^{2\,x}}{25}+9\,\ln \relax (x)+\ln \relax (x)\,\left ({\mathrm {e}}^x\,\left (\frac {\frac {x^5}{5}+\frac {129\,x^4}{5}+\frac {627\,x^3}{5}+1534525\,x^2+335175000\,x+17969531250}{x^3+375\,x^2+46875\,x+1953125}-\frac {1534425\,x^2+335175000\,x+17969531250}{x^3+375\,x^2+46875\,x+1953125}\right )+\frac {\frac {24\,x^4}{125}+72\,x^3+9000\,x^2+375000\,x}{x^3+375\,x^2+46875\,x+1953125}-\frac {\frac {18\,x^4}{125}+72\,x^3+12375\,x^2+796875\,x+17578125}{x^3+375\,x^2+46875\,x+1953125}\right )-\frac {62500\,x+5859375}{x^3+375\,x^2+46875\,x+1953125}-\frac {\frac {x\,\left (25\,x^3\,{\mathrm {e}}^x-3125\,x^2\,{\mathrm {e}}^x+25\,x^4\,{\mathrm {e}}^x+x^4\right )}{15625\,\left (x+125\right )}+\frac {x\,\ln \relax (x)\,\left (75\,x^2\,{\mathrm {e}}^x+50\,x^3\,{\mathrm {e}}^x-3125\,x\,{\mathrm {e}}^x-125\,x^2+3\,x^3\right )}{125\,\left (x+125\right )}+\frac {x\,{\ln \relax (x)}^2\,\left (25\,x^2\,{\mathrm {e}}^x+50\,x\,{\mathrm {e}}^x+3\,x^2\right )}{x+125}}{x^2+250\,x\,\ln \relax (x)+15625\,{\ln \relax (x)}^2}-\frac {\frac {x\,\left (406250\,x^3\,{\mathrm {e}}^x-390625\,x^2\,{\mathrm {e}}^x+21950\,x^4\,{\mathrm {e}}^x+3250\,x^5\,{\mathrm {e}}^x+25\,x^6\,{\mathrm {e}}^x-48828125\,x\,{\mathrm {e}}^x-1953125\,x^2+31250\,x^3+1000\,x^4+4\,x^5\right )}{15625\,{\left (x+125\right )}^3}+\frac {x\,{\ln \relax (x)}^2\,\left (15675\,x^2\,{\mathrm {e}}^x+3225\,x^3\,{\mathrm {e}}^x+25\,x^4\,{\mathrm {e}}^x+12500\,x\,{\mathrm {e}}^x+1125\,x^2+6\,x^3\right )}{{\left (x+125\right )}^3}+\frac {x\,\ln \relax (x)\,\left (428125\,x^2\,{\mathrm {e}}^x+37650\,x^3\,{\mathrm {e}}^x+6475\,x^4\,{\mathrm {e}}^x+50\,x^5\,{\mathrm {e}}^x+781250\,x\,{\mathrm {e}}^x+46875\,x^2+2000\,x^3+9\,x^4\right )}{125\,{\left (x+125\right )}^3}}{x+125\,\ln \relax (x)}+\frac {x^2}{3125}+\frac {{\mathrm {e}}^x\,\left (\frac {x^6}{625}+\frac {131\,x^5}{625}+\frac {1129\,x^4}{625}+\frac {256\,x^3}{5}-50\,x^2-6250\,x\right )}{x^3+375\,x^2+46875\,x+1953125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 70, normalized size = 2.50 \begin {gather*} - \frac {x^{2}}{15625} + x + \frac {x^{4} + 250 x^{3} \log {\relax (x )}}{15625 x^{2} + 3906250 x \log {\relax (x )} + 244140625 \log {\relax (x )}^{2}} + \frac {- 50 x e^{x} \log {\relax (x )} + \left (- 5 x - 625 \log {\relax (x )}\right ) e^{2 x}}{125 x + 15625 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________