3.94.100 \(\int \frac {-5625-2625 x^2-250 x^4+e^{\frac {2 (25 x^4-10 x^5+x^6)}{25-10 e^x x+e^{2 x} x^2}} (-250+150 e^x x-30 e^{2 x} x^2+2 e^{3 x} x^3)+e^x (3375 x+1575 x^3+150 x^5)+e^{2 x} (-675 x^2-315 x^4-30 x^6)+e^{3 x} (45 x^3+21 x^5+2 x^7)+e^{\frac {25 x^4-10 x^5+x^6}{25-10 e^x x+e^{2 x} x^2}} (-2375-500 x^2-500 x^4+250 x^5-30 x^6+e^{2 x} (-285 x^2-60 x^4)+e^{3 x} (19 x^3+4 x^5)+e^x (1425 x+300 x^3+50 x^5-80 x^6+24 x^7-2 x^8))}{-3125-1250 x^2-125 x^4+e^{\frac {2 (25 x^4-10 x^5+x^6)}{25-10 e^x x+e^{2 x} x^2}} (-125+75 e^x x-15 e^{2 x} x^2+e^{3 x} x^3)+e^x (1875 x+750 x^3+75 x^5)+e^{2 x} (-375 x^2-150 x^4-15 x^6)+e^{3 x} (25 x^3+10 x^5+x^7)+e^{\frac {25 x^4-10 x^5+x^6}{25-10 e^x x+e^{2 x} x^2}} (-1250-250 x^2+e^x (750 x+150 x^3)+e^{2 x} (-150 x^2-30 x^4)+e^{3 x} (10 x^3+2 x^5))} \, dx\)

Optimal. Leaf size=37 \[ 2 x-\frac {x}{5+e^{\frac {(5-x)^2 x^4}{\left (5-e^x x\right )^2}}+x^2} \]

________________________________________________________________________________________

Rubi [F]  time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(-5625 - 2625*x^2 - 250*x^4 + E^((2*(25*x^4 - 10*x^5 + x^6))/(25 - 10*E^x*x + E^(2*x)*x^2))*(-250 + 150*E^
x*x - 30*E^(2*x)*x^2 + 2*E^(3*x)*x^3) + E^x*(3375*x + 1575*x^3 + 150*x^5) + E^(2*x)*(-675*x^2 - 315*x^4 - 30*x
^6) + E^(3*x)*(45*x^3 + 21*x^5 + 2*x^7) + E^((25*x^4 - 10*x^5 + x^6)/(25 - 10*E^x*x + E^(2*x)*x^2))*(-2375 - 5
00*x^2 - 500*x^4 + 250*x^5 - 30*x^6 + E^(2*x)*(-285*x^2 - 60*x^4) + E^(3*x)*(19*x^3 + 4*x^5) + E^x*(1425*x + 3
00*x^3 + 50*x^5 - 80*x^6 + 24*x^7 - 2*x^8)))/(-3125 - 1250*x^2 - 125*x^4 + E^((2*(25*x^4 - 10*x^5 + x^6))/(25
- 10*E^x*x + E^(2*x)*x^2))*(-125 + 75*E^x*x - 15*E^(2*x)*x^2 + E^(3*x)*x^3) + E^x*(1875*x + 750*x^3 + 75*x^5)
+ E^(2*x)*(-375*x^2 - 150*x^4 - 15*x^6) + E^(3*x)*(25*x^3 + 10*x^5 + x^7) + E^((25*x^4 - 10*x^5 + x^6)/(25 - 1
0*E^x*x + E^(2*x)*x^2))*(-1250 - 250*x^2 + E^x*(750*x + 150*x^3) + E^(2*x)*(-150*x^2 - 30*x^4) + E^(3*x)*(10*x
^3 + 2*x^5))),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 1.07, size = 67, normalized size = 1.81 \begin {gather*} x \left (2-\frac {e^{\frac {10 x^5}{\left (-5+e^x x\right )^2}}}{e^{\frac {x^4 \left (25+x^2\right )}{\left (-5+e^x x\right )^2}}+e^{\frac {10 x^5}{\left (-5+e^x x\right )^2}} \left (5+x^2\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-5625 - 2625*x^2 - 250*x^4 + E^((2*(25*x^4 - 10*x^5 + x^6))/(25 - 10*E^x*x + E^(2*x)*x^2))*(-250 +
150*E^x*x - 30*E^(2*x)*x^2 + 2*E^(3*x)*x^3) + E^x*(3375*x + 1575*x^3 + 150*x^5) + E^(2*x)*(-675*x^2 - 315*x^4
- 30*x^6) + E^(3*x)*(45*x^3 + 21*x^5 + 2*x^7) + E^((25*x^4 - 10*x^5 + x^6)/(25 - 10*E^x*x + E^(2*x)*x^2))*(-23
75 - 500*x^2 - 500*x^4 + 250*x^5 - 30*x^6 + E^(2*x)*(-285*x^2 - 60*x^4) + E^(3*x)*(19*x^3 + 4*x^5) + E^x*(1425
*x + 300*x^3 + 50*x^5 - 80*x^6 + 24*x^7 - 2*x^8)))/(-3125 - 1250*x^2 - 125*x^4 + E^((2*(25*x^4 - 10*x^5 + x^6)
)/(25 - 10*E^x*x + E^(2*x)*x^2))*(-125 + 75*E^x*x - 15*E^(2*x)*x^2 + E^(3*x)*x^3) + E^x*(1875*x + 750*x^3 + 75
*x^5) + E^(2*x)*(-375*x^2 - 150*x^4 - 15*x^6) + E^(3*x)*(25*x^3 + 10*x^5 + x^7) + E^((25*x^4 - 10*x^5 + x^6)/(
25 - 10*E^x*x + E^(2*x)*x^2))*(-1250 - 250*x^2 + E^x*(750*x + 150*x^3) + E^(2*x)*(-150*x^2 - 30*x^4) + E^(3*x)
*(10*x^3 + 2*x^5))),x]

[Out]

x*(2 - E^((10*x^5)/(-5 + E^x*x)^2)/(E^((x^4*(25 + x^2))/(-5 + E^x*x)^2) + E^((10*x^5)/(-5 + E^x*x)^2)*(5 + x^2
)))

________________________________________________________________________________________

fricas [B]  time = 0.59, size = 86, normalized size = 2.32 \begin {gather*} \frac {2 \, x^{3} + 2 \, x e^{\left (\frac {x^{6} - 10 \, x^{5} + 25 \, x^{4}}{x^{2} e^{\left (2 \, x\right )} - 10 \, x e^{x} + 25}\right )} + 9 \, x}{x^{2} + e^{\left (\frac {x^{6} - 10 \, x^{5} + 25 \, x^{4}}{x^{2} e^{\left (2 \, x\right )} - 10 \, x e^{x} + 25}\right )} + 5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x)^3-30*exp(x)^2*x^2+150*exp(x)*x-250)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x
+25))^2+((4*x^5+19*x^3)*exp(x)^3+(-60*x^4-285*x^2)*exp(x)^2+(-2*x^8+24*x^7-80*x^6+50*x^5+300*x^3+1425*x)*exp(x
)-30*x^6+250*x^5-500*x^4-500*x^2-2375)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))+(2*x^7+21*x^5+45
*x^3)*exp(x)^3+(-30*x^6-315*x^4-675*x^2)*exp(x)^2+(150*x^5+1575*x^3+3375*x)*exp(x)-250*x^4-2625*x^2-5625)/((x^
3*exp(x)^3-15*exp(x)^2*x^2+75*exp(x)*x-125)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))^2+((2*x^5+1
0*x^3)*exp(x)^3+(-30*x^4-150*x^2)*exp(x)^2+(150*x^3+750*x)*exp(x)-250*x^2-1250)*exp((x^6-10*x^5+25*x^4)/(exp(x
)^2*x^2-10*exp(x)*x+25))+(x^7+10*x^5+25*x^3)*exp(x)^3+(-15*x^6-150*x^4-375*x^2)*exp(x)^2+(75*x^5+750*x^3+1875*
x)*exp(x)-125*x^4-1250*x^2-3125),x, algorithm="fricas")

[Out]

(2*x^3 + 2*x*e^((x^6 - 10*x^5 + 25*x^4)/(x^2*e^(2*x) - 10*x*e^x + 25)) + 9*x)/(x^2 + e^((x^6 - 10*x^5 + 25*x^4
)/(x^2*e^(2*x) - 10*x*e^x + 25)) + 5)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x)^3-30*exp(x)^2*x^2+150*exp(x)*x-250)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x
+25))^2+((4*x^5+19*x^3)*exp(x)^3+(-60*x^4-285*x^2)*exp(x)^2+(-2*x^8+24*x^7-80*x^6+50*x^5+300*x^3+1425*x)*exp(x
)-30*x^6+250*x^5-500*x^4-500*x^2-2375)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))+(2*x^7+21*x^5+45
*x^3)*exp(x)^3+(-30*x^6-315*x^4-675*x^2)*exp(x)^2+(150*x^5+1575*x^3+3375*x)*exp(x)-250*x^4-2625*x^2-5625)/((x^
3*exp(x)^3-15*exp(x)^2*x^2+75*exp(x)*x-125)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))^2+((2*x^5+1
0*x^3)*exp(x)^3+(-30*x^4-150*x^2)*exp(x)^2+(150*x^3+750*x)*exp(x)-250*x^2-1250)*exp((x^6-10*x^5+25*x^4)/(exp(x
)^2*x^2-10*exp(x)*x+25))+(x^7+10*x^5+25*x^3)*exp(x)^3+(-15*x^6-150*x^4-375*x^2)*exp(x)^2+(75*x^5+750*x^3+1875*
x)*exp(x)-125*x^4-1250*x^2-3125),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.38, size = 44, normalized size = 1.19




method result size



risch \(2 x -\frac {x}{x^{2}+{\mathrm e}^{-\frac {x^{4} \left (x -5\right )^{2}}{-{\mathrm e}^{2 x} x^{2}+10 \,{\mathrm e}^{x} x -25}}+5}\) \(44\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3*exp(x)^3-30*exp(x)^2*x^2+150*exp(x)*x-250)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))^
2+((4*x^5+19*x^3)*exp(x)^3+(-60*x^4-285*x^2)*exp(x)^2+(-2*x^8+24*x^7-80*x^6+50*x^5+300*x^3+1425*x)*exp(x)-30*x
^6+250*x^5-500*x^4-500*x^2-2375)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))+(2*x^7+21*x^5+45*x^3)*
exp(x)^3+(-30*x^6-315*x^4-675*x^2)*exp(x)^2+(150*x^5+1575*x^3+3375*x)*exp(x)-250*x^4-2625*x^2-5625)/((x^3*exp(
x)^3-15*exp(x)^2*x^2+75*exp(x)*x-125)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))^2+((2*x^5+10*x^3)
*exp(x)^3+(-30*x^4-150*x^2)*exp(x)^2+(150*x^3+750*x)*exp(x)-250*x^2-1250)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^
2-10*exp(x)*x+25))+(x^7+10*x^5+25*x^3)*exp(x)^3+(-15*x^6-150*x^4-375*x^2)*exp(x)^2+(75*x^5+750*x^3+1875*x)*exp
(x)-125*x^4-1250*x^2-3125),x,method=_RETURNVERBOSE)

[Out]

2*x-x/(x^2+exp(-x^4*(x-5)^2/(-exp(2*x)*x^2+10*exp(x)*x-25))+5)

________________________________________________________________________________________

maxima [B]  time = 3.17, size = 474, normalized size = 12.81 \begin {gather*} \frac {2 \, x e^{\left (x^{4} e^{\left (-2 \, x\right )} + 10 \, x^{3} e^{\left (-3 \, x\right )} + 25 \, x^{2} e^{\left (-2 \, x\right )} + 75 \, x^{2} e^{\left (-4 \, x\right )} + 250 \, x e^{\left (-3 \, x\right )} + 500 \, x e^{\left (-5 \, x\right )} + \frac {15625}{x^{2} e^{\left (8 \, x\right )} - 10 \, x e^{\left (7 \, x\right )} + 25 \, e^{\left (6 \, x\right )}} + \frac {15625}{x^{2} e^{\left (6 \, x\right )} - 10 \, x e^{\left (5 \, x\right )} + 25 \, e^{\left (4 \, x\right )}} + \frac {18750}{x e^{\left (7 \, x\right )} - 5 \, e^{\left (6 \, x\right )}} + \frac {12500}{x e^{\left (5 \, x\right )} - 5 \, e^{\left (4 \, x\right )}} + 1875 \, e^{\left (-4 \, x\right )} + 3125 \, e^{\left (-6 \, x\right )}\right )} + {\left (2 \, x^{3} + 9 \, x\right )} e^{\left (10 \, x^{3} e^{\left (-2 \, x\right )} + 100 \, x^{2} e^{\left (-3 \, x\right )} + 750 \, x e^{\left (-4 \, x\right )} + \frac {31250}{x^{2} e^{\left (7 \, x\right )} - 10 \, x e^{\left (6 \, x\right )} + 25 \, e^{\left (5 \, x\right )}} + \frac {31250}{x e^{\left (6 \, x\right )} - 5 \, e^{\left (5 \, x\right )}} + 5000 \, e^{\left (-5 \, x\right )}\right )}}{{\left (x^{2} + 5\right )} e^{\left (10 \, x^{3} e^{\left (-2 \, x\right )} + 100 \, x^{2} e^{\left (-3 \, x\right )} + 750 \, x e^{\left (-4 \, x\right )} + \frac {31250}{x^{2} e^{\left (7 \, x\right )} - 10 \, x e^{\left (6 \, x\right )} + 25 \, e^{\left (5 \, x\right )}} + \frac {31250}{x e^{\left (6 \, x\right )} - 5 \, e^{\left (5 \, x\right )}} + 5000 \, e^{\left (-5 \, x\right )}\right )} + e^{\left (x^{4} e^{\left (-2 \, x\right )} + 10 \, x^{3} e^{\left (-3 \, x\right )} + 25 \, x^{2} e^{\left (-2 \, x\right )} + 75 \, x^{2} e^{\left (-4 \, x\right )} + 250 \, x e^{\left (-3 \, x\right )} + 500 \, x e^{\left (-5 \, x\right )} + \frac {15625}{x^{2} e^{\left (8 \, x\right )} - 10 \, x e^{\left (7 \, x\right )} + 25 \, e^{\left (6 \, x\right )}} + \frac {15625}{x^{2} e^{\left (6 \, x\right )} - 10 \, x e^{\left (5 \, x\right )} + 25 \, e^{\left (4 \, x\right )}} + \frac {18750}{x e^{\left (7 \, x\right )} - 5 \, e^{\left (6 \, x\right )}} + \frac {12500}{x e^{\left (5 \, x\right )} - 5 \, e^{\left (4 \, x\right )}} + 1875 \, e^{\left (-4 \, x\right )} + 3125 \, e^{\left (-6 \, x\right )}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3*exp(x)^3-30*exp(x)^2*x^2+150*exp(x)*x-250)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x
+25))^2+((4*x^5+19*x^3)*exp(x)^3+(-60*x^4-285*x^2)*exp(x)^2+(-2*x^8+24*x^7-80*x^6+50*x^5+300*x^3+1425*x)*exp(x
)-30*x^6+250*x^5-500*x^4-500*x^2-2375)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))+(2*x^7+21*x^5+45
*x^3)*exp(x)^3+(-30*x^6-315*x^4-675*x^2)*exp(x)^2+(150*x^5+1575*x^3+3375*x)*exp(x)-250*x^4-2625*x^2-5625)/((x^
3*exp(x)^3-15*exp(x)^2*x^2+75*exp(x)*x-125)*exp((x^6-10*x^5+25*x^4)/(exp(x)^2*x^2-10*exp(x)*x+25))^2+((2*x^5+1
0*x^3)*exp(x)^3+(-30*x^4-150*x^2)*exp(x)^2+(150*x^3+750*x)*exp(x)-250*x^2-1250)*exp((x^6-10*x^5+25*x^4)/(exp(x
)^2*x^2-10*exp(x)*x+25))+(x^7+10*x^5+25*x^3)*exp(x)^3+(-15*x^6-150*x^4-375*x^2)*exp(x)^2+(75*x^5+750*x^3+1875*
x)*exp(x)-125*x^4-1250*x^2-3125),x, algorithm="maxima")

[Out]

(2*x*e^(x^4*e^(-2*x) + 10*x^3*e^(-3*x) + 25*x^2*e^(-2*x) + 75*x^2*e^(-4*x) + 250*x*e^(-3*x) + 500*x*e^(-5*x) +
 15625/(x^2*e^(8*x) - 10*x*e^(7*x) + 25*e^(6*x)) + 15625/(x^2*e^(6*x) - 10*x*e^(5*x) + 25*e^(4*x)) + 18750/(x*
e^(7*x) - 5*e^(6*x)) + 12500/(x*e^(5*x) - 5*e^(4*x)) + 1875*e^(-4*x) + 3125*e^(-6*x)) + (2*x^3 + 9*x)*e^(10*x^
3*e^(-2*x) + 100*x^2*e^(-3*x) + 750*x*e^(-4*x) + 31250/(x^2*e^(7*x) - 10*x*e^(6*x) + 25*e^(5*x)) + 31250/(x*e^
(6*x) - 5*e^(5*x)) + 5000*e^(-5*x)))/((x^2 + 5)*e^(10*x^3*e^(-2*x) + 100*x^2*e^(-3*x) + 750*x*e^(-4*x) + 31250
/(x^2*e^(7*x) - 10*x*e^(6*x) + 25*e^(5*x)) + 31250/(x*e^(6*x) - 5*e^(5*x)) + 5000*e^(-5*x)) + e^(x^4*e^(-2*x)
+ 10*x^3*e^(-3*x) + 25*x^2*e^(-2*x) + 75*x^2*e^(-4*x) + 250*x*e^(-3*x) + 500*x*e^(-5*x) + 15625/(x^2*e^(8*x) -
 10*x*e^(7*x) + 25*e^(6*x)) + 15625/(x^2*e^(6*x) - 10*x*e^(5*x) + 25*e^(4*x)) + 18750/(x*e^(7*x) - 5*e^(6*x))
+ 12500/(x*e^(5*x) - 5*e^(4*x)) + 1875*e^(-4*x) + 3125*e^(-6*x)))

________________________________________________________________________________________

mupad [B]  time = 9.52, size = 83, normalized size = 2.24 \begin {gather*} 2\,x-\frac {x}{x^2+{\mathrm {e}}^{\frac {x^6}{x^2\,{\mathrm {e}}^{2\,x}-10\,x\,{\mathrm {e}}^x+25}}\,{\mathrm {e}}^{-\frac {10\,x^5}{x^2\,{\mathrm {e}}^{2\,x}-10\,x\,{\mathrm {e}}^x+25}}\,{\mathrm {e}}^{\frac {25\,x^4}{x^2\,{\mathrm {e}}^{2\,x}-10\,x\,{\mathrm {e}}^x+25}}+5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((25*x^4 - 10*x^5 + x^6)/(x^2*exp(2*x) - 10*x*exp(x) + 25))*(exp(2*x)*(285*x^2 + 60*x^4) - exp(3*x)*(1
9*x^3 + 4*x^5) - exp(x)*(1425*x + 300*x^3 + 50*x^5 - 80*x^6 + 24*x^7 - 2*x^8) + 500*x^2 + 500*x^4 - 250*x^5 +
30*x^6 + 2375) - exp(3*x)*(45*x^3 + 21*x^5 + 2*x^7) + exp(2*x)*(675*x^2 + 315*x^4 + 30*x^6) + exp((2*(25*x^4 -
 10*x^5 + x^6))/(x^2*exp(2*x) - 10*x*exp(x) + 25))*(30*x^2*exp(2*x) - 2*x^3*exp(3*x) - 150*x*exp(x) + 250) + 2
625*x^2 + 250*x^4 - exp(x)*(3375*x + 1575*x^3 + 150*x^5) + 5625)/(exp(2*x)*(375*x^2 + 150*x^4 + 15*x^6) - exp(
3*x)*(25*x^3 + 10*x^5 + x^7) + exp((2*(25*x^4 - 10*x^5 + x^6))/(x^2*exp(2*x) - 10*x*exp(x) + 25))*(15*x^2*exp(
2*x) - x^3*exp(3*x) - 75*x*exp(x) + 125) + exp((25*x^4 - 10*x^5 + x^6)/(x^2*exp(2*x) - 10*x*exp(x) + 25))*(exp
(2*x)*(150*x^2 + 30*x^4) - exp(3*x)*(10*x^3 + 2*x^5) - exp(x)*(750*x + 150*x^3) + 250*x^2 + 1250) + 1250*x^2 +
 125*x^4 - exp(x)*(1875*x + 750*x^3 + 75*x^5) + 3125),x)

[Out]

2*x - x/(x^2 + exp(x^6/(x^2*exp(2*x) - 10*x*exp(x) + 25))*exp(-(10*x^5)/(x^2*exp(2*x) - 10*x*exp(x) + 25))*exp
((25*x^4)/(x^2*exp(2*x) - 10*x*exp(x) + 25)) + 5)

________________________________________________________________________________________

sympy [A]  time = 2.67, size = 41, normalized size = 1.11 \begin {gather*} 2 x - \frac {x}{x^{2} + e^{\frac {x^{6} - 10 x^{5} + 25 x^{4}}{x^{2} e^{2 x} - 10 x e^{x} + 25}} + 5} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3*exp(x)**3-30*exp(x)**2*x**2+150*exp(x)*x-250)*exp((x**6-10*x**5+25*x**4)/(exp(x)**2*x**2-10
*exp(x)*x+25))**2+((4*x**5+19*x**3)*exp(x)**3+(-60*x**4-285*x**2)*exp(x)**2+(-2*x**8+24*x**7-80*x**6+50*x**5+3
00*x**3+1425*x)*exp(x)-30*x**6+250*x**5-500*x**4-500*x**2-2375)*exp((x**6-10*x**5+25*x**4)/(exp(x)**2*x**2-10*
exp(x)*x+25))+(2*x**7+21*x**5+45*x**3)*exp(x)**3+(-30*x**6-315*x**4-675*x**2)*exp(x)**2+(150*x**5+1575*x**3+33
75*x)*exp(x)-250*x**4-2625*x**2-5625)/((x**3*exp(x)**3-15*exp(x)**2*x**2+75*exp(x)*x-125)*exp((x**6-10*x**5+25
*x**4)/(exp(x)**2*x**2-10*exp(x)*x+25))**2+((2*x**5+10*x**3)*exp(x)**3+(-30*x**4-150*x**2)*exp(x)**2+(150*x**3
+750*x)*exp(x)-250*x**2-1250)*exp((x**6-10*x**5+25*x**4)/(exp(x)**2*x**2-10*exp(x)*x+25))+(x**7+10*x**5+25*x**
3)*exp(x)**3+(-15*x**6-150*x**4-375*x**2)*exp(x)**2+(75*x**5+750*x**3+1875*x)*exp(x)-125*x**4-1250*x**2-3125),
x)

[Out]

2*x - x/(x**2 + exp((x**6 - 10*x**5 + 25*x**4)/(x**2*exp(2*x) - 10*x*exp(x) + 25)) + 5)

________________________________________________________________________________________