Optimal. Leaf size=26 \[ -3+x-x^2+x^3-x^4-\frac {2}{5 (x+\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 6, number of rules used = 4, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6741, 12, 6742, 6686} \begin {gather*} -x^4+x^3-x^2+x-\frac {2}{5 (x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+2 x+5 x^3-10 x^4+15 x^5-20 x^6+\left (10 x^2-20 x^3+30 x^4-40 x^5\right ) \log (x)+\left (5 x-10 x^2+15 x^3-20 x^4\right ) \log ^2(x)}{5 x (x+\log (x))^2} \, dx\\ &=\frac {1}{5} \int \frac {2+2 x+5 x^3-10 x^4+15 x^5-20 x^6+\left (10 x^2-20 x^3+30 x^4-40 x^5\right ) \log (x)+\left (5 x-10 x^2+15 x^3-20 x^4\right ) \log ^2(x)}{x (x+\log (x))^2} \, dx\\ &=\frac {1}{5} \int \left (-5 \left (-1+2 x-3 x^2+4 x^3\right )+\frac {2 (1+x)}{x (x+\log (x))^2}\right ) \, dx\\ &=\frac {2}{5} \int \frac {1+x}{x (x+\log (x))^2} \, dx-\int \left (-1+2 x-3 x^2+4 x^3\right ) \, dx\\ &=x-x^2+x^3-x^4-\frac {2}{5 (x+\log (x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 31, normalized size = 1.19 \begin {gather*} \frac {1}{5} \left (5 x-5 x^2+5 x^3-5 x^4-\frac {2}{x+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 49, normalized size = 1.88 \begin {gather*} -\frac {5 \, x^{5} - 5 \, x^{4} + 5 \, x^{3} - 5 \, x^{2} + 5 \, {\left (x^{4} - x^{3} + x^{2} - x\right )} \log \relax (x) + 2}{5 \, {\left (x + \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 0.88 \begin {gather*} -x^{4} + x^{3} - x^{2} + x - \frac {2}{5 \, {\left (x + \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.92
method | result | size |
risch | \(-x^{4}+x^{3}-x^{2}+x -\frac {2}{5 \left (x +\ln \relax (x )\right )}\) | \(24\) |
norman | \(\frac {-\frac {2}{5}+x^{2}+x^{4}+x^{3} \ln \relax (x )+x \ln \relax (x )-x^{3}-x^{5}-x^{2} \ln \relax (x )-x^{4} \ln \relax (x )}{x +\ln \relax (x )}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 49, normalized size = 1.88 \begin {gather*} -\frac {5 \, x^{5} - 5 \, x^{4} + 5 \, x^{3} - 5 \, x^{2} + 5 \, {\left (x^{4} - x^{3} + x^{2} - x\right )} \log \relax (x) + 2}{5 \, {\left (x + \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.50, size = 27, normalized size = 1.04 \begin {gather*} x-\frac {2}{5\,\left (x+\ln \relax (x)\right )}-x^2+x^3-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 0.77 \begin {gather*} - x^{4} + x^{3} - x^{2} + x - \frac {2}{5 x + 5 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________