Optimal. Leaf size=23 \[ e^4 \log \left (2-x+\frac {x}{4 e^{-x}+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 e^4+e^{4+2 x} x^2+e^{4+x} (-4+4 x)}{-32+16 x+e^x \left (-20 x+8 x^2\right )+e^{2 x} \left (-3 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (-16+4 e^x-4 e^x x-e^{2 x} x^2\right )}{32-16 x-e^x \left (-20 x+8 x^2\right )-e^{2 x} \left (-3 x^2+x^3\right )} \, dx\\ &=e^4 \int \frac {-16+4 e^x-4 e^x x-e^{2 x} x^2}{32-16 x-e^x \left (-20 x+8 x^2\right )-e^{2 x} \left (-3 x^2+x^3\right )} \, dx\\ &=e^4 \int \left (\frac {1}{-3+x}+\frac {4 (1+x)}{x \left (4+e^x x\right )}-\frac {4 \left (6+2 x-4 x^2+x^3\right )}{(-3+x) x \left (-8+4 x-3 e^x x+e^x x^2\right )}\right ) \, dx\\ &=e^4 \log (3-x)+\left (4 e^4\right ) \int \frac {1+x}{x \left (4+e^x x\right )} \, dx-\left (4 e^4\right ) \int \frac {6+2 x-4 x^2+x^3}{(-3+x) x \left (-8+4 x-3 e^x x+e^x x^2\right )} \, dx\\ &=e^4 \log (3-x)+\left (4 e^4\right ) \int \left (\frac {1}{4+e^x x}+\frac {1}{x \left (4+e^x x\right )}\right ) \, dx-\left (4 e^4\right ) \int \left (-\frac {1}{-8+4 x-3 e^x x+e^x x^2}+\frac {1}{(-3+x) \left (-8+4 x-3 e^x x+e^x x^2\right )}-\frac {2}{x \left (-8+4 x-3 e^x x+e^x x^2\right )}+\frac {x}{-8+4 x-3 e^x x+e^x x^2}\right ) \, dx\\ &=e^4 \log (3-x)+\left (4 e^4\right ) \int \frac {1}{4+e^x x} \, dx+\left (4 e^4\right ) \int \frac {1}{x \left (4+e^x x\right )} \, dx+\left (4 e^4\right ) \int \frac {1}{-8+4 x-3 e^x x+e^x x^2} \, dx-\left (4 e^4\right ) \int \frac {1}{(-3+x) \left (-8+4 x-3 e^x x+e^x x^2\right )} \, dx-\left (4 e^4\right ) \int \frac {x}{-8+4 x-3 e^x x+e^x x^2} \, dx+\left (8 e^4\right ) \int \frac {1}{x \left (-8+4 x-3 e^x x+e^x x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.38, size = 53, normalized size = 2.30 \begin {gather*} e^4 \left (\log (3-x)+\log (x)-\log ((3-x) x)-\log \left (4+e^x x\right )+\log \left (8-4 x+3 e^x x-e^x x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.07, size = 62, normalized size = 2.70 \begin {gather*} e^{4} \log \left (x - 3\right ) + e^{4} \log \left (\frac {4 \, {\left (x - 2\right )} e^{4} + {\left (x^{2} - 3 \, x\right )} e^{\left (x + 4\right )}}{x^{2} - 3 \, x}\right ) - e^{4} \log \left (\frac {x e^{\left (x + 4\right )} + 4 \, e^{4}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.61, size = 32, normalized size = 1.39 \begin {gather*} e^{4} \log \left (x^{2} e^{x} - 3 \, x e^{x} + 4 \, x - 8\right ) - e^{4} \log \left (x e^{x} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 33, normalized size = 1.43
method | result | size |
norman | \({\mathrm e}^{4} \ln \left ({\mathrm e}^{x} x^{2}-3 \,{\mathrm e}^{x} x +4 x -8\right )-{\mathrm e}^{4} \ln \left ({\mathrm e}^{x} x +4\right )\) | \(33\) |
risch | \({\mathrm e}^{4} \ln \left (x -3\right )+{\mathrm e}^{4} \ln \left ({\mathrm e}^{x}+\frac {4 x -8}{x \left (x -3\right )}\right )-{\mathrm e}^{4} \ln \left ({\mathrm e}^{x}+\frac {4}{x}\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 52, normalized size = 2.26 \begin {gather*} e^{4} \log \left (x - 3\right ) + e^{4} \log \left (\frac {{\left (x^{2} - 3 \, x\right )} e^{x} + 4 \, x - 8}{x^{2} - 3 \, x}\right ) - e^{4} \log \left (\frac {x e^{x} + 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.27, size = 30, normalized size = 1.30 \begin {gather*} {\mathrm {e}}^4\,\left (\ln \left (4\,x+x^2\,{\mathrm {e}}^x-3\,x\,{\mathrm {e}}^x-8\right )-\ln \left (x\,{\mathrm {e}}^x+4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________