Optimal. Leaf size=24 \[ 14-e^{14-x}-\frac {4}{(5+2 x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20+8 x+8 x \log (x)+e^{14-x} \left (25 x+20 x^2+4 x^3\right ) \log ^2(x)}{\left (25 x+20 x^2+4 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20+8 x+8 x \log (x)+e^{14-x} \left (25 x+20 x^2+4 x^3\right ) \log ^2(x)}{x \left (25+20 x+4 x^2\right ) \log ^2(x)} \, dx\\ &=\int \frac {20+8 x+8 x \log (x)+e^{14-x} \left (25 x+20 x^2+4 x^3\right ) \log ^2(x)}{x (5+2 x)^2 \log ^2(x)} \, dx\\ &=\int \left (e^{14-x}+\frac {4 (5+2 x+2 x \log (x))}{x (5+2 x)^2 \log ^2(x)}\right ) \, dx\\ &=4 \int \frac {5+2 x+2 x \log (x)}{x (5+2 x)^2 \log ^2(x)} \, dx+\int e^{14-x} \, dx\\ &=-e^{14-x}+4 \int \left (\frac {1}{x (5+2 x) \log ^2(x)}+\frac {2}{(5+2 x)^2 \log (x)}\right ) \, dx\\ &=-e^{14-x}+4 \int \frac {1}{x (5+2 x) \log ^2(x)} \, dx+8 \int \frac {1}{(5+2 x)^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.58, size = 23, normalized size = 0.96 \begin {gather*} -e^{14-x}-\frac {4}{(5+2 x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 29, normalized size = 1.21 \begin {gather*} -\frac {{\left (2 \, x + 5\right )} e^{\left (-x + 14\right )} \log \relax (x) + 4}{{\left (2 \, x + 5\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 37, normalized size = 1.54 \begin {gather*} -\frac {2 \, x e^{\left (-x + 14\right )} \log \relax (x) + 5 \, e^{\left (-x + 14\right )} \log \relax (x) + 4}{2 \, x \log \relax (x) + 5 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.96
method | result | size |
risch | \(-{\mathrm e}^{-x +14}-\frac {4}{\left (5+2 x \right ) \ln \relax (x )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 35, normalized size = 1.46 \begin {gather*} -\frac {{\left ({\left (2 \, x e^{14} + 5 \, e^{14}\right )} \log \relax (x) + 4 \, e^{x}\right )} e^{\left (-x\right )}}{{\left (2 \, x + 5\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.34, size = 45, normalized size = 1.88 \begin {gather*} -\frac {4}{\ln \relax (x)\,\left (2\,x+5\right )}-\frac {5\,{\mathrm {e}}^{14-x}}{2\,x+5}-\frac {2\,x\,{\mathrm {e}}^{14-x}}{2\,x+5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 15, normalized size = 0.62 \begin {gather*} - e^{14 - x} - \frac {4}{\left (2 x + 5\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________