Optimal. Leaf size=33 \[ \frac {2+\frac {e^x}{3}}{e^4-x+4 x^2+\frac {e^x}{3+x}} \]
________________________________________________________________________________________
Rubi [F] time = 2.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {54+e^{2 x}-396 x-282 x^2-48 x^3+e^x \left (-3-81 x-17 x^2+15 x^3+4 x^4+e^4 \left (9+6 x+x^2\right )\right )}{3 e^{2 x}+27 x^2-198 x^3+291 x^4+264 x^5+48 x^6+e^8 \left (27+18 x+3 x^2\right )+e^4 \left (-54 x+180 x^2+138 x^3+24 x^4\right )+e^x \left (-18 x+66 x^2+24 x^3+e^4 (18+6 x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x}+e^{4+x} (3+x)^2-6 (3+x)^2 (-1+8 x)+e^x \left (-3-81 x-17 x^2+15 x^3+4 x^4\right )}{3 \left (e^x+e^4 (3+x)+x \left (-3+11 x+4 x^2\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{2 x}+e^{4+x} (3+x)^2-6 (3+x)^2 (-1+8 x)+e^x \left (-3-81 x-17 x^2+15 x^3+4 x^4\right )}{\left (e^x+e^4 (3+x)+x \left (-3+11 x+4 x^2\right )\right )^2} \, dx\\ &=\frac {1}{3} \int \left (1+\frac {-3 \left (1-e^4\right )-\left (75-4 e^4\right ) x-\left (39-e^4\right ) x^2+7 x^3+4 x^4}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}+\frac {54 \left (1+\frac {1}{6} \left (e^4-2 e^8\right )\right )-405 \left (1+\frac {1}{135} e^4 \left (-85+7 e^4\right )\right ) x-483 \left (1+\frac {1}{483} e^4 \left (-111+8 e^4\right )\right ) x^2+738 \left (1-\frac {1}{738} e^4 \left (81+e^4\right )\right ) x^3+653 \left (1-\frac {54 e^4}{653}\right ) x^4+3 \left (1-\frac {8 e^4}{3}\right ) x^5-88 x^6-16 x^7}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}\right ) \, dx\\ &=\frac {x}{3}+\frac {1}{3} \int \frac {-3 \left (1-e^4\right )-\left (75-4 e^4\right ) x-\left (39-e^4\right ) x^2+7 x^3+4 x^4}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {1}{3} \int \frac {54 \left (1+\frac {1}{6} \left (e^4-2 e^8\right )\right )-405 \left (1+\frac {1}{135} e^4 \left (-85+7 e^4\right )\right ) x-483 \left (1+\frac {1}{483} e^4 \left (-111+8 e^4\right )\right ) x^2+738 \left (1-\frac {1}{738} e^4 \left (81+e^4\right )\right ) x^3+653 \left (1-\frac {54 e^4}{653}\right ) x^4+3 \left (1-\frac {8 e^4}{3}\right ) x^5-88 x^6-16 x^7}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx\\ &=\frac {x}{3}+\frac {1}{3} \int \left (\frac {3 \left (-1+e^4\right )}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}+\frac {\left (-75+4 e^4\right ) x}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}+\frac {\left (-39+e^4\right ) x^2}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}+\frac {7 x^3}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}+\frac {4 x^4}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3}\right ) \, dx+\frac {1}{3} \int \frac {54-405 x-483 x^2+738 x^3+653 x^4+3 x^5-88 x^6-16 x^7-e^8 (2+x) (3+x)^2+e^4 \left (9+255 x+111 x^2-81 x^3-54 x^4-8 x^5\right )}{\left (e^x+e^4 (3+x)+x \left (-3+11 x+4 x^2\right )\right )^2} \, dx\\ &=\frac {x}{3}+\frac {1}{3} \int \left (\frac {9 \left (6+e^4-2 e^8\right )}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}+\frac {3 \left (-135+85 e^4-7 e^8\right ) x}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}+\frac {\left (-483+111 e^4-8 e^8\right ) x^2}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}+\frac {\left (738-81 e^4-e^8\right ) x^3}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}+\frac {\left (653-54 e^4\right ) x^4}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}+\frac {\left (3-8 e^4\right ) x^5}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}-\frac {88 x^6}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}-\frac {16 x^7}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2}\right ) \, dx+\frac {4}{3} \int \frac {x^4}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {7}{3} \int \frac {x^3}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {1}{3} \left (-39+e^4\right ) \int \frac {x^2}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\left (-1+e^4\right ) \int \frac {1}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {1}{3} \left (-75+4 e^4\right ) \int \frac {x}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx\\ &=\frac {x}{3}+\frac {4}{3} \int \frac {x^4}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {7}{3} \int \frac {x^3}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx-\frac {16}{3} \int \frac {x^7}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx-\frac {88}{3} \int \frac {x^6}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\frac {1}{3} \left (653-54 e^4\right ) \int \frac {x^4}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\frac {1}{3} \left (3-8 e^4\right ) \int \frac {x^5}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\frac {1}{3} \left (-39+e^4\right ) \int \frac {x^2}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\left (-1+e^4\right ) \int \frac {1}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {1}{3} \left (-75+4 e^4\right ) \int \frac {x}{3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3} \, dx+\frac {1}{3} \left (-483+111 e^4-8 e^8\right ) \int \frac {x^2}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\left (-135+85 e^4-7 e^8\right ) \int \frac {x}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\left (3 \left (6+e^4-2 e^8\right )\right ) \int \frac {1}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx+\frac {1}{3} \left (738-81 e^4-e^8\right ) \int \frac {x^3}{\left (3 e^4+e^x-3 \left (1-\frac {e^4}{3}\right ) x+11 x^2+4 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 60, normalized size = 1.82 \begin {gather*} \frac {e^x x-3 e^4 (3+x)+3 \left (6+5 x-11 x^2-4 x^3\right )}{3 \left (e^x+e^4 (3+x)+x \left (-3+11 x+4 x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 53, normalized size = 1.61 \begin {gather*} -\frac {12 \, x^{3} + 33 \, x^{2} + 3 \, {\left (x + 3\right )} e^{4} - x e^{x} - 15 \, x - 18}{3 \, {\left (4 \, x^{3} + 11 \, x^{2} + {\left (x + 3\right )} e^{4} - 3 \, x + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 57, normalized size = 1.73
method | result | size |
norman | \(\frac {-11 x^{2}-4 x^{3}+\left (5-{\mathrm e}^{4}\right ) x +\frac {{\mathrm e}^{x} x}{3}-3 \,{\mathrm e}^{4}+6}{4 x^{3}+x \,{\mathrm e}^{4}+11 x^{2}+3 \,{\mathrm e}^{4}+{\mathrm e}^{x}-3 x}\) | \(57\) |
risch | \(\frac {x}{3}-\frac {4 x^{4}+x^{2} {\mathrm e}^{4}+23 x^{3}+6 x \,{\mathrm e}^{4}+30 x^{2}+9 \,{\mathrm e}^{4}-15 x -18}{3 \left (4 x^{3}+x \,{\mathrm e}^{4}+11 x^{2}+3 \,{\mathrm e}^{4}+{\mathrm e}^{x}-3 x \right )}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 55, normalized size = 1.67 \begin {gather*} -\frac {12 \, x^{3} + 33 \, x^{2} + 3 \, x {\left (e^{4} - 5\right )} - x e^{x} + 9 \, e^{4} - 18}{3 \, {\left (4 \, x^{3} + 11 \, x^{2} + x {\left (e^{4} - 3\right )} + 3 \, e^{4} + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {396\,x-{\mathrm {e}}^{2\,x}+282\,x^2+48\,x^3+{\mathrm {e}}^x\,\left (81\,x-{\mathrm {e}}^4\,\left (x^2+6\,x+9\right )+17\,x^2-15\,x^3-4\,x^4+3\right )-54}{3\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^8\,\left (3\,x^2+18\,x+27\right )+{\mathrm {e}}^4\,\left (24\,x^4+138\,x^3+180\,x^2-54\,x\right )+27\,x^2-198\,x^3+291\,x^4+264\,x^5+48\,x^6+{\mathrm {e}}^x\,\left (66\,x^2-18\,x+24\,x^3+{\mathrm {e}}^4\,\left (6\,x+18\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 71, normalized size = 2.15 \begin {gather*} \frac {x}{3} + \frac {- 4 x^{4} - 23 x^{3} - x^{2} e^{4} - 30 x^{2} - 6 x e^{4} + 15 x - 9 e^{4} + 18}{12 x^{3} + 33 x^{2} - 9 x + 3 x e^{4} + 3 e^{x} + 9 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________