Optimal. Leaf size=23 \[ -4+e^5-e^x-x+\frac {x \log (x)}{\log (5+x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x \log (x)+(5+x+(5+x) \log (x)) \log (5+x)+\left (-5+e^x (-5-x)-x\right ) \log ^2(5+x)}{(5+x) \log ^2(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-e^x+\frac {1}{\log (5+x)}+\frac {\log (x) \left (-\frac {x}{5+x}+\log (5+x)\right )}{\log ^2(5+x)}\right ) \, dx\\ &=-x-\int e^x \, dx+\int \frac {1}{\log (5+x)} \, dx+\int \frac {\log (x) \left (-\frac {x}{5+x}+\log (5+x)\right )}{\log ^2(5+x)} \, dx\\ &=-e^x-x+\int \left (-\frac {x \log (x)}{(5+x) \log ^2(5+x)}+\frac {\log (x)}{\log (5+x)}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,5+x\right )\\ &=-e^x-x+\text {li}(5+x)-\int \frac {x \log (x)}{(5+x) \log ^2(5+x)} \, dx+\int \frac {\log (x)}{\log (5+x)} \, dx\\ &=-e^x-x+\text {li}(5+x)-\int \left (\frac {\log (x)}{\log ^2(5+x)}-\frac {5 \log (x)}{(5+x) \log ^2(5+x)}\right ) \, dx+\int \frac {\log (x)}{\log (5+x)} \, dx\\ &=-e^x-x+\text {li}(5+x)+5 \int \frac {\log (x)}{(5+x) \log ^2(5+x)} \, dx-\int \frac {\log (x)}{\log ^2(5+x)} \, dx+\int \frac {\log (x)}{\log (5+x)} \, dx\\ &=-e^x-x+\text {li}(5+x)+5 \operatorname {Subst}\left (\int \frac {\log (-5+x)}{x \log ^2(x)} \, dx,x,5+x\right )-\int \frac {\log (x)}{\log ^2(5+x)} \, dx+\int \frac {\log (x)}{\log (5+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.13, size = 30, normalized size = 1.30 \begin {gather*} -e^x-x-\text {Ei}(\log (5+x))+\frac {x \log (x)}{\log (5+x)}+\text {li}(5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 23, normalized size = 1.00 \begin {gather*} -\frac {{\left (x + e^{x}\right )} \log \left (x + 5\right ) - x \log \relax (x)}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 27, normalized size = 1.17 \begin {gather*} -\frac {x \log \left (x + 5\right ) + e^{x} \log \left (x + 5\right ) - x \log \relax (x)}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 19, normalized size = 0.83
method | result | size |
risch | \(-x -{\mathrm e}^{x}+\frac {\ln \relax (x ) x}{\ln \left (5+x \right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 1.00 \begin {gather*} -\frac {{\left (x + e^{x}\right )} \log \left (x + 5\right ) - x \log \relax (x)}{\log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.49, size = 18, normalized size = 0.78 \begin {gather*} \frac {x\,\ln \relax (x)}{\ln \left (x+5\right )}-{\mathrm {e}}^x-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 14, normalized size = 0.61 \begin {gather*} \frac {x \log {\relax (x )}}{\log {\left (x + 5 \right )}} - x - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________