Optimal. Leaf size=18 \[ 25 \left (4+x+\frac {e^{-7+x} x}{\log (2+x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-25 e^{-7+x} x+e^{-7+x} \left (50+75 x+25 x^2\right ) \log (2+x)+(50+25 x) \log ^2(2+x)}{(2+x) \log ^2(2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (25+\frac {25 e^{-7+x} \left (-x+2 \log (2+x)+3 x \log (2+x)+x^2 \log (2+x)\right )}{(2+x) \log ^2(2+x)}\right ) \, dx\\ &=25 x+25 \int \frac {e^{-7+x} \left (-x+2 \log (2+x)+3 x \log (2+x)+x^2 \log (2+x)\right )}{(2+x) \log ^2(2+x)} \, dx\\ &=25 x+25 \int \frac {e^{-7+x} \left (-x+\left (2+3 x+x^2\right ) \log (2+x)\right )}{(2+x) \log ^2(2+x)} \, dx\\ &=25 x+25 \int \left (-\frac {e^{-7+x} x}{(2+x) \log ^2(2+x)}+\frac {e^{-7+x} (1+x)}{\log (2+x)}\right ) \, dx\\ &=25 x-25 \int \frac {e^{-7+x} x}{(2+x) \log ^2(2+x)} \, dx+25 \int \frac {e^{-7+x} (1+x)}{\log (2+x)} \, dx\\ &=25 x-25 \int \left (\frac {e^{-7+x}}{\log ^2(2+x)}-\frac {2 e^{-7+x}}{(2+x) \log ^2(2+x)}\right ) \, dx+25 \int \left (-\frac {e^{-7+x}}{\log (2+x)}+\frac {e^{-7+x} (2+x)}{\log (2+x)}\right ) \, dx\\ &=25 x-25 \int \frac {e^{-7+x}}{\log ^2(2+x)} \, dx-25 \int \frac {e^{-7+x}}{\log (2+x)} \, dx+25 \int \frac {e^{-7+x} (2+x)}{\log (2+x)} \, dx+50 \int \frac {e^{-7+x}}{(2+x) \log ^2(2+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 22, normalized size = 1.22 \begin {gather*} \frac {25 \left (e^7 x+\frac {e^x x}{\log (2+x)}\right )}{e^7} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 21, normalized size = 1.17 \begin {gather*} \frac {25 \, {\left (x e^{\left (x - 7\right )} + x \log \left (x + 2\right )\right )}}{\log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 23, normalized size = 1.28 \begin {gather*} \frac {25 \, {\left (x e^{7} \log \left (x + 2\right ) + x e^{x}\right )} e^{\left (-7\right )}}{\log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.52, size = 18, normalized size = 1.00
method | result | size |
default | \(25 x +\frac {25 x \,{\mathrm e}^{x -7}}{\ln \left (2+x \right )}\) | \(18\) |
risch | \(25 x +\frac {25 x \,{\mathrm e}^{x -7}}{\ln \left (2+x \right )}\) | \(18\) |
norman | \(\frac {25 x \,{\mathrm e}^{x -7}+25 x \ln \left (2+x \right )}{\ln \left (2+x \right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 1.28 \begin {gather*} \frac {25 \, {\left (x e^{7} \log \left (x + 2\right ) + x e^{x}\right )} e^{\left (-7\right )}}{\log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.75, size = 17, normalized size = 0.94 \begin {gather*} 25\,x+\frac {25\,x\,{\mathrm {e}}^{-7}\,{\mathrm {e}}^x}{\ln \left (x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 0.83 \begin {gather*} \frac {25 x e^{x - 7}}{\log {\left (x + 2 \right )}} + 25 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________