Optimal. Leaf size=36 \[ -1+x \left (-x+\frac {5-x+\frac {x}{e^6-x^2}}{x}\right )+\frac {x}{\log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 28, normalized size of antiderivative = 0.78, number of steps used = 9, number of rules used = 6, integrand size = 103, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.058, Rules used = {28, 6688, 1814, 1586, 2297, 2298} \begin {gather*} -x^2+\frac {x}{e^6-x^2}-x+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 1586
Rule 1814
Rule 2297
Rule 2298
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{12}+2 e^6 x^2-x^4+\left (e^{12}-2 e^6 x^2+x^4\right ) \log (x)+\left (e^{12} (-1-2 x)+x^2-x^4-2 x^5+e^6 \left (1+2 x^2+4 x^3\right )\right ) \log ^2(x)}{\left (-e^6+x^2\right )^2 \log ^2(x)} \, dx\\ &=\int \left (\frac {x^2-x^4-2 x^5-e^{12} (1+2 x)+e^6 \left (1+2 x^2+4 x^3\right )}{\left (e^6-x^2\right )^2}-\frac {1}{\log ^2(x)}+\frac {1}{\log (x)}\right ) \, dx\\ &=\int \frac {x^2-x^4-2 x^5-e^{12} (1+2 x)+e^6 \left (1+2 x^2+4 x^3\right )}{\left (e^6-x^2\right )^2} \, dx-\int \frac {1}{\log ^2(x)} \, dx+\int \frac {1}{\log (x)} \, dx\\ &=\frac {x}{e^6-x^2}+\frac {x}{\log (x)}+\text {li}(x)-\frac {\int \frac {2 e^{12}+4 e^{12} x-2 e^6 x^2-4 e^6 x^3}{e^6-x^2} \, dx}{2 e^6}-\int \frac {1}{\log (x)} \, dx\\ &=\frac {x}{e^6-x^2}+\frac {x}{\log (x)}-\frac {\int \left (2 e^6+4 e^6 x\right ) \, dx}{2 e^6}\\ &=-x-x^2+\frac {x}{e^6-x^2}+\frac {x}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 29, normalized size = 0.81 \begin {gather*} -x-x^2-\frac {x}{-e^6+x^2}+\frac {x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 45, normalized size = 1.25 \begin {gather*} \frac {x^{3} - x e^{6} - {\left (x^{4} + x^{3} - {\left (x^{2} + x\right )} e^{6} + x\right )} \log \relax (x)}{{\left (x^{2} - e^{6}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 60, normalized size = 1.67 \begin {gather*} -\frac {x^{4} \log \relax (x) + x^{3} \log \relax (x) - x^{2} e^{6} \log \relax (x) - x^{3} - x e^{6} \log \relax (x) + x e^{6} + 2 \, x \log \relax (x)}{x^{2} \log \relax (x) - e^{6} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 0.78
method | result | size |
default | \(\frac {x}{\ln \relax (x )}-x^{2}-x +\frac {x}{{\mathrm e}^{6}-x^{2}}\) | \(28\) |
risch | \(-\frac {x \left (-x^{3}+x \,{\mathrm e}^{6}-x^{2}+{\mathrm e}^{6}-1\right )}{{\mathrm e}^{6}-x^{2}}+\frac {x}{\ln \relax (x )}\) | \(39\) |
norman | \(\frac {x \,{\mathrm e}^{6}+x^{3} \ln \relax (x )+x^{4} \ln \relax (x )-\ln \relax (x ) {\mathrm e}^{12}+\left (-{\mathrm e}^{6}+1\right ) x \ln \relax (x )-x^{3}}{\left ({\mathrm e}^{6}-x^{2}\right ) \ln \relax (x )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 49, normalized size = 1.36 \begin {gather*} \frac {x^{3} - x e^{6} - {\left (x^{4} + x^{3} - x^{2} e^{6} - x {\left (e^{6} - 1\right )}\right )} \log \relax (x)}{{\left (x^{2} - e^{6}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.25, size = 27, normalized size = 0.75 \begin {gather*} \frac {x}{\ln \relax (x)}-x+\frac {x}{{\mathrm {e}}^6-x^2}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 17, normalized size = 0.47 \begin {gather*} - x^{2} - x + \frac {x}{\log {\relax (x )}} - \frac {x}{x^{2} - e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________