3.93.24 \(\int \frac {-10+2 e^4+2 x^4}{x^3} \, dx\)

Optimal. Leaf size=14 \[ \frac {5-e^4+x^4}{x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 15, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {14} \begin {gather*} x^2+\frac {5-e^4}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-10 + 2*E^4 + 2*x^4)/x^3,x]

[Out]

(5 - E^4)/x^2 + x^2

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (-5+e^4\right )}{x^3}+2 x\right ) \, dx\\ &=\frac {5-e^4}{x^2}+x^2\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 14, normalized size = 1.00 \begin {gather*} \frac {5-e^4+x^4}{x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-10 + 2*E^4 + 2*x^4)/x^3,x]

[Out]

(5 - E^4 + x^4)/x^2

________________________________________________________________________________________

fricas [A]  time = 0.91, size = 13, normalized size = 0.93 \begin {gather*} \frac {x^{4} - e^{4} + 5}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(4)+2*x^4-10)/x^3,x, algorithm="fricas")

[Out]

(x^4 - e^4 + 5)/x^2

________________________________________________________________________________________

giac [A]  time = 0.22, size = 13, normalized size = 0.93 \begin {gather*} x^{2} - \frac {e^{4} - 5}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(4)+2*x^4-10)/x^3,x, algorithm="giac")

[Out]

x^2 - (e^4 - 5)/x^2

________________________________________________________________________________________

maple [A]  time = 0.03, size = 14, normalized size = 1.00




method result size



default \(x^{2}-\frac {{\mathrm e}^{4}-5}{x^{2}}\) \(14\)
norman \(\frac {5+x^{4}-{\mathrm e}^{4}}{x^{2}}\) \(14\)
gosper \(-\frac {-x^{4}+{\mathrm e}^{4}-5}{x^{2}}\) \(15\)
risch \(x^{2}-\frac {{\mathrm e}^{4}}{x^{2}}+\frac {5}{x^{2}}\) \(17\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*exp(4)+2*x^4-10)/x^3,x,method=_RETURNVERBOSE)

[Out]

x^2-(exp(4)-5)/x^2

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 13, normalized size = 0.93 \begin {gather*} x^{2} - \frac {e^{4} - 5}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(4)+2*x^4-10)/x^3,x, algorithm="maxima")

[Out]

x^2 - (e^4 - 5)/x^2

________________________________________________________________________________________

mupad [B]  time = 7.45, size = 13, normalized size = 0.93 \begin {gather*} x^2-\frac {{\mathrm {e}}^4-5}{x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*exp(4) + 2*x^4 - 10)/x^3,x)

[Out]

x^2 - (exp(4) - 5)/x^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 10, normalized size = 0.71 \begin {gather*} x^{2} + \frac {5 - e^{4}}{x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*exp(4)+2*x**4-10)/x**3,x)

[Out]

x**2 + (5 - exp(4))/x**2

________________________________________________________________________________________