Optimal. Leaf size=20 \[ 2+3 e^{e^e}+\frac {4-\frac {1}{x}}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 12, normalized size of antiderivative = 0.60, number of steps used = 1, number of rules used = 1, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {37} \begin {gather*} -\frac {(1-2 x)^2}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 37
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {(1-2 x)^2}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 11, normalized size = 0.55 \begin {gather*} -\frac {1}{x^2}+\frac {4}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 9, normalized size = 0.45 \begin {gather*} \frac {4 \, x - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 9, normalized size = 0.45 \begin {gather*} \frac {4 \, x - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 10, normalized size = 0.50
method | result | size |
gosper | \(\frac {4 x -1}{x^{2}}\) | \(10\) |
norman | \(\frac {4 x -1}{x^{2}}\) | \(10\) |
risch | \(\frac {4 x -1}{x^{2}}\) | \(10\) |
default | \(-\frac {1}{x^{2}}+\frac {4}{x}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 9, normalized size = 0.45 \begin {gather*} \frac {4 \, x - 1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 9, normalized size = 0.45 \begin {gather*} \frac {4\,x-1}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 8, normalized size = 0.40 \begin {gather*} - \frac {1 - 4 x}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________