3.93.15 \(\int \frac {1}{3} e^{\frac {1}{3} (e^{31/5} x^2+e^{\frac {6}{5}+x} x^2)} (2 e^{31/5} x+e^{\frac {6}{5}+x} (2 x+x^2)) \, dx\)

Optimal. Leaf size=21 \[ e^{\frac {1}{3} e^{6/5} \left (e^5+e^x\right ) x^2} \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 27, normalized size of antiderivative = 1.29, number of steps used = 2, number of rules used = 2, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {12, 6706} \begin {gather*} e^{\frac {1}{3} \left (e^{x+\frac {6}{5}} x^2+e^{31/5} x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^((E^(31/5)*x^2 + E^(6/5 + x)*x^2)/3)*(2*E^(31/5)*x + E^(6/5 + x)*(2*x + x^2)))/3,x]

[Out]

E^((E^(31/5)*x^2 + E^(6/5 + x)*x^2)/3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int e^{\frac {1}{3} \left (e^{31/5} x^2+e^{\frac {6}{5}+x} x^2\right )} \left (2 e^{31/5} x+e^{\frac {6}{5}+x} \left (2 x+x^2\right )\right ) \, dx\\ &=e^{\frac {1}{3} \left (e^{31/5} x^2+e^{\frac {6}{5}+x} x^2\right )}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 21, normalized size = 1.00 \begin {gather*} e^{\frac {1}{3} e^{6/5} \left (e^5+e^x\right ) x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^((E^(31/5)*x^2 + E^(6/5 + x)*x^2)/3)*(2*E^(31/5)*x + E^(6/5 + x)*(2*x + x^2)))/3,x]

[Out]

E^((E^(6/5)*(E^5 + E^x)*x^2)/3)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 18, normalized size = 0.86 \begin {gather*} e^{\left (\frac {1}{3} \, x^{2} e^{\frac {31}{5}} + \frac {1}{3} \, x^{2} e^{\left (x + \frac {6}{5}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((x^2+2*x)*exp(3/5)^2*exp(x)+2*x*exp(3/5)^2*exp(5/2)^2)*exp(1/3*x^2*exp(3/5)^2*exp(x)+1/3*x^2*ex
p(3/5)^2*exp(5/2)^2),x, algorithm="fricas")

[Out]

e^(1/3*x^2*e^(31/5) + 1/3*x^2*e^(x + 6/5))

________________________________________________________________________________________

giac [A]  time = 0.25, size = 18, normalized size = 0.86 \begin {gather*} e^{\left (\frac {1}{3} \, x^{2} e^{\frac {31}{5}} + \frac {1}{3} \, x^{2} e^{\left (x + \frac {6}{5}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((x^2+2*x)*exp(3/5)^2*exp(x)+2*x*exp(3/5)^2*exp(5/2)^2)*exp(1/3*x^2*exp(3/5)^2*exp(x)+1/3*x^2*ex
p(3/5)^2*exp(5/2)^2),x, algorithm="giac")

[Out]

e^(1/3*x^2*e^(31/5) + 1/3*x^2*e^(x + 6/5))

________________________________________________________________________________________

maple [A]  time = 0.15, size = 14, normalized size = 0.67




method result size



risch \({\mathrm e}^{\frac {x^{2} \left ({\mathrm e}^{\frac {6}{5}+x}+{\mathrm e}^{\frac {31}{5}}\right )}{3}}\) \(14\)
norman \({\mathrm e}^{\frac {x^{2} {\mathrm e}^{\frac {6}{5}} {\mathrm e}^{x}}{3}+\frac {x^{2} {\mathrm e}^{\frac {6}{5}} {\mathrm e}^{5}}{3}}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*((x^2+2*x)*exp(3/5)^2*exp(x)+2*x*exp(3/5)^2*exp(5/2)^2)*exp(1/3*x^2*exp(3/5)^2*exp(x)+1/3*x^2*exp(3/5)
^2*exp(5/2)^2),x,method=_RETURNVERBOSE)

[Out]

exp(1/3*x^2*(exp(6/5+x)+exp(31/5)))

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 18, normalized size = 0.86 \begin {gather*} e^{\left (\frac {1}{3} \, x^{2} e^{\frac {31}{5}} + \frac {1}{3} \, x^{2} e^{\left (x + \frac {6}{5}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((x^2+2*x)*exp(3/5)^2*exp(x)+2*x*exp(3/5)^2*exp(5/2)^2)*exp(1/3*x^2*exp(3/5)^2*exp(x)+1/3*x^2*ex
p(3/5)^2*exp(5/2)^2),x, algorithm="maxima")

[Out]

e^(1/3*x^2*e^(31/5) + 1/3*x^2*e^(x + 6/5))

________________________________________________________________________________________

mupad [B]  time = 6.17, size = 18, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^{x+\frac {6}{5}}}{3}+\frac {x^2\,{\mathrm {e}}^{31/5}}{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((x^2*exp(31/5))/3 + (x^2*exp(6/5)*exp(x))/3)*(2*x*exp(31/5) + exp(6/5)*exp(x)*(2*x + x^2)))/3,x)

[Out]

exp((x^2*exp(x + 6/5))/3 + (x^2*exp(31/5))/3)

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 24, normalized size = 1.14 \begin {gather*} e^{\frac {x^{2} e^{\frac {6}{5}} e^{x}}{3} + \frac {x^{2} e^{\frac {31}{5}}}{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((x**2+2*x)*exp(3/5)**2*exp(x)+2*x*exp(3/5)**2*exp(5/2)**2)*exp(1/3*x**2*exp(3/5)**2*exp(x)+1/3*
x**2*exp(3/5)**2*exp(5/2)**2),x)

[Out]

exp(x**2*exp(6/5)*exp(x)/3 + x**2*exp(31/5)/3)

________________________________________________________________________________________