Optimal. Leaf size=28 \[ \frac {x \left (e-e^{\left (-\log \left (\frac {3}{2}\right )+\log (3)\right )^2}+x\right )}{-x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e+e^{\log ^2\left (\frac {3}{2}\right )-2 \log \left (\frac {3}{2}\right ) \log (3)+\log ^2(3)}-x-x^2+\left (e-e^{\log ^2\left (\frac {3}{2}\right )-2 \log \left (\frac {3}{2}\right ) \log (3)+\log ^2(3)}+2 x\right ) \log (x)}{x^2-2 x \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e \left (1-e^{-1+\log ^2(2)}\right )-x (1+x)+\left (e-e^{\log ^2(2)}+2 x\right ) \log (x)}{(x-\log (x))^2} \, dx\\ &=\int \left (-\frac {\left (-e+e^{\log ^2(2)}-x\right ) (-1+x)}{(x-\log (x))^2}+\frac {-e+e^{\log ^2(2)}-2 x}{x-\log (x)}\right ) \, dx\\ &=-\int \frac {\left (-e+e^{\log ^2(2)}-x\right ) (-1+x)}{(x-\log (x))^2} \, dx+\int \frac {-e+e^{\log ^2(2)}-2 x}{x-\log (x)} \, dx\\ &=-\int \left (\frac {e \left (1-e^{-1+\log ^2(2)}\right )}{(x-\log (x))^2}+\frac {\left (1-e+e^{\log ^2(2)}\right ) x}{(x-\log (x))^2}-\frac {x^2}{(x-\log (x))^2}\right ) \, dx+\int \left (-\frac {e \left (1-e^{-1+\log ^2(2)}\right )}{x-\log (x)}-\frac {2 x}{x-\log (x)}\right ) \, dx\\ &=-\left (2 \int \frac {x}{x-\log (x)} \, dx\right )-\left (e-e^{\log ^2(2)}\right ) \int \frac {1}{(x-\log (x))^2} \, dx-\left (e-e^{\log ^2(2)}\right ) \int \frac {1}{x-\log (x)} \, dx-\left (1-e+e^{\log ^2(2)}\right ) \int \frac {x}{(x-\log (x))^2} \, dx+\int \frac {x^2}{(x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 21, normalized size = 0.75 \begin {gather*} \frac {x \left (e-e^{\log ^2(2)}+x\right )}{-x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 37, normalized size = 1.32 \begin {gather*} -\frac {x^{2} + x e - x e^{\left (\log \relax (3)^{2} + 2 \, \log \relax (3) \log \left (\frac {2}{3}\right ) + \log \left (\frac {2}{3}\right )^{2}\right )}}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 26, normalized size = 0.93 \begin {gather*} -\frac {x^{2} + x e - x e^{\left (\log \relax (2)^{2}\right )}}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 23, normalized size = 0.82
method | result | size |
risch | \(-\frac {\left (x +{\mathrm e}-{\mathrm e}^{\ln \relax (2)^{2}}\right ) x}{x -\ln \relax (x )}\) | \(23\) |
norman | \(\frac {\left (-{\mathrm e}+{\mathrm e}^{\ln \relax (2)^{2}}\right ) \ln \relax (x )-x^{2}}{x -\ln \relax (x )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 26, normalized size = 0.93 \begin {gather*} -\frac {x^{2} + x {\left (e - e^{\left (\log \relax (2)^{2}\right )}\right )}}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.08, size = 22, normalized size = 0.79 \begin {gather*} -\frac {x\,\left (x-{\mathrm {e}}^{{\ln \relax (2)}^2}+\mathrm {e}\right )}{x-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.71 \begin {gather*} \frac {x^{2} - x e^{\log {\relax (2 )}^{2}} + e x}{- x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________