Optimal. Leaf size=20 \[ 3+\log \left (-5+\frac {3}{4} e^{-5+(-2+x) x \log (2)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 28, normalized size of antiderivative = 1.40, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 6684} \begin {gather*} \log \left (-2^{-2 x} \left (3\ 2^{x^2}-5 e^5 2^{2 x+2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (2) \int \frac {e^{-5+\left (-2 x+x^2\right ) \log (2)} (-6+6 x)}{-20+3 e^{-5+\left (-2 x+x^2\right ) \log (2)}} \, dx\\ &=\log \left (-2^{-2 x} \left (3\ 2^{x^2}-5\ 2^{2+2 x} e^5\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.80, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-5+\left (-2 x+x^2\right ) \log (2)} (-6+6 x) \log (2)}{-20+3 e^{-5+\left (-2 x+x^2\right ) \log (2)}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.27, size = 18, normalized size = 0.90 \begin {gather*} \log \left (3 \, e^{\left ({\left (x^{2} - 2 \, x\right )} \log \relax (2) - 5\right )} - 20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 20, normalized size = 1.00 \begin {gather*} \log \left ({\left | 3 \, e^{\left (x^{2} \log \relax (2) - 2 \, x \log \relax (2) - 5\right )} - 20 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 16, normalized size = 0.80
method | result | size |
risch | \(5+\ln \left (2^{\left (x -2\right ) x} {\mathrm e}^{-5}-\frac {20}{3}\right )\) | \(16\) |
norman | \(\ln \left (3 \,{\mathrm e}^{\left (x^{2}-2 x \right ) \ln \relax (2)-5}-20\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 31, normalized size = 1.55 \begin {gather*} -{\left (2 \, x - \frac {\log \left (2^{\left (x^{2}\right )} - \frac {20}{3} \, e^{\left (2 \, x \log \relax (2) + 5\right )}\right )}{\log \relax (2)}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 24, normalized size = 1.20 \begin {gather*} \ln \left (3\,2^{x^2}\,{\mathrm {e}}^{-5}-20\,2^{2\,x}\right )-2\,x\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.85 \begin {gather*} \log {\left (e^{\left (x^{2} - 2 x\right ) \log {\relax (2 )} - 5} - \frac {20}{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________