Optimal. Leaf size=18 \[ e^{e^{\frac {6}{x^3}+x+5 x^2 \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 2.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) \left (-18+x^4+5 x^5+10 x^5 \log (x)\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) \left (-18+x^4+5 x^5\right )}{x^4}+10 \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x \log (x)\right ) \, dx\\ &=10 \int \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x \log (x) \, dx+\int \frac {\exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) \left (-18+x^4+5 x^5\right )}{x^4} \, dx\\ &=10 \int \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x \log (x) \, dx+\int \left (\exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right )-\frac {18 \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right )}{x^4}+5 \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x\right ) \, dx\\ &=5 \int \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x \, dx+10 \int \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) x \log (x) \, dx-18 \int \frac {\exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right )}{x^4} \, dx+\int \exp \left (e^{\frac {6+x^4+5 x^5 \log (x)}{x^3}}+\frac {6+x^4+5 x^5 \log (x)}{x^3}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.37, size = 19, normalized size = 1.06 \begin {gather*} e^{e^{\frac {6}{x^3}+x} x^{5 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 56, normalized size = 3.11 \begin {gather*} e^{\left (\frac {5 \, x^{5} \log \relax (x) + x^{4} + x^{3} e^{\left (\frac {5 \, x^{5} \log \relax (x) + x^{4} + 6}{x^{3}}\right )} + 6}{x^{3}} - \frac {5 \, x^{5} \log \relax (x) + x^{4} + 6}{x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (10 \, x^{5} \log \relax (x) + 5 \, x^{5} + x^{4} - 18\right )} e^{\left (\frac {5 \, x^{5} \log \relax (x) + x^{4} + 6}{x^{3}} + e^{\left (\frac {5 \, x^{5} \log \relax (x) + x^{4} + 6}{x^{3}}\right )}\right )}}{x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 19, normalized size = 1.06
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {5 x^{5} \ln \relax (x )+x^{4}+6}{x^{3}}}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 16, normalized size = 0.89 \begin {gather*} e^{\left (e^{\left (5 \, x^{2} \log \relax (x) + x + \frac {6}{x^{3}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.74, size = 17, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{x^{5\,x^2}\,{\mathrm {e}}^{x+\frac {6}{x^3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.13, size = 19, normalized size = 1.06 \begin {gather*} e^{e^{\frac {5 x^{5} \log {\relax (x )} + x^{4} + 6}{x^{3}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________