Optimal. Leaf size=18 \[ e^{-3-\frac {1}{3} e^4 \log (x)+\log ^2(\log (4))} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 19, normalized size of antiderivative = 1.06, number of steps used = 3, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 2203} \begin {gather*} x^{-\frac {e^4}{3}} e^{\log ^2(\log (4))-3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2203
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\frac {1}{3} \int \frac {\exp \left (4+\frac {1}{3} \left (-9-e^4 \log (x)+3 \log ^2(\log (4))\right )\right )}{x} \, dx\right )\\ &=-\left (\frac {1}{3} \operatorname {Subst}\left (\int e^{4+\frac {1}{3} \left (-9-e^4 x+3 \log ^2(\log (4))\right )} \, dx,x,\log (x)\right )\right )\\ &=e^{-3+\log ^2(\log (4))} x^{-\frac {e^4}{3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 1.06 \begin {gather*} e^{-3+\log ^2(\log (4))} x^{-\frac {e^4}{3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 16, normalized size = 0.89 \begin {gather*} e^{\left (-\frac {1}{3} \, e^{4} \log \relax (x) + \log \left (2 \, \log \relax (2)\right )^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 16, normalized size = 0.89 \begin {gather*} e^{\left (-\frac {1}{3} \, e^{4} \log \relax (x) + \log \left (2 \, \log \relax (2)\right )^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 1.06
method | result | size |
gosper | \({\mathrm e}^{\ln \left (2 \ln \relax (2)\right )^{2}-\frac {{\mathrm e}^{4} \ln \relax (x )}{3}-3}\) | \(19\) |
derivativedivides | \({\mathrm e}^{\ln \left (2 \ln \relax (2)\right )^{2}-\frac {{\mathrm e}^{4} \ln \relax (x )}{3}-3}\) | \(19\) |
default | \({\mathrm e}^{\ln \left (2 \ln \relax (2)\right )^{2}-\frac {{\mathrm e}^{4} \ln \relax (x )}{3}-3}\) | \(19\) |
norman | \({\mathrm e}^{\ln \left (2 \ln \relax (2)\right )^{2}-\frac {{\mathrm e}^{4} \ln \relax (x )}{3}-3}\) | \(19\) |
risch | \(x^{-\frac {{\mathrm e}^{4}}{3}} \ln \relax (2)^{2 \ln \relax (2)} {\mathrm e}^{\ln \relax (2)^{2}-3+\ln \left (\ln \relax (2)\right )^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 16, normalized size = 0.89 \begin {gather*} e^{\left (-\frac {1}{3} \, e^{4} \log \relax (x) + \log \left (2 \, \log \relax (2)\right )^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.67, size = 29, normalized size = 1.61 \begin {gather*} \frac {2^{2\,\ln \left (\ln \relax (2)\right )}\,{\mathrm {e}}^{{\ln \relax (2)}^2}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{{\ln \left (\ln \relax (2)\right )}^2}}{x^{\frac {{\mathrm {e}}^4}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 19, normalized size = 1.06 \begin {gather*} \frac {1}{x^{\frac {e^{4}}{3}} e^{3 - \log {\left (2 \log {\relax (2 )} \right )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________