Optimal. Leaf size=33 \[ x+x \left (2+\log \left (x+\frac {5 \left (5-e^3-x+\frac {1}{2} \left (e^x+x\right )\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.41, antiderivative size = 37, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 3, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6741, 6742, 2548} \begin {gather*} x \log \left (\frac {2 x^2-5 x+5 e^x+10 \left (5-e^3\right )}{2 x}\right )+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2548
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {100 \left (1-\frac {e^3}{5}\right )-15 x+8 x^2+e^x (10+5 x)+\left (50-10 e^3+5 e^x-5 x+2 x^2\right ) \log \left (\frac {50-10 e^3+5 e^x-5 x+2 x^2}{2 x}\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx\\ &=\int \left (2+x+\frac {x \left (-5 \left (11-2 e^3\right )+9 x-2 x^2\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}+\log \left (\frac {5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}{2 x}\right )\right ) \, dx\\ &=2 x+\frac {x^2}{2}+\int \frac {x \left (-5 \left (11-2 e^3\right )+9 x-2 x^2\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx+\int \log \left (\frac {5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}{2 x}\right ) \, dx\\ &=2 x+\frac {x^2}{2}+x \log \left (\frac {5 e^x+10 \left (5-e^3\right )-5 x+2 x^2}{2 x}\right )-\int \frac {10 e^3+5 e^x (-1+x)+2 \left (-25+x^2\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx+\int \left (\frac {2 x^3}{-5 e^x-50 \left (1-\frac {e^3}{5}\right )+5 x-2 x^2}+\frac {5 \left (-11+2 e^3\right ) x}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}+\frac {9 x^2}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}\right ) \, dx\\ &=2 x+\frac {x^2}{2}+x \log \left (\frac {5 e^x+10 \left (5-e^3\right )-5 x+2 x^2}{2 x}\right )+2 \int \frac {x^3}{-5 e^x-50 \left (1-\frac {e^3}{5}\right )+5 x-2 x^2} \, dx+9 \int \frac {x^2}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\left (5 \left (11-2 e^3\right )\right ) \int \frac {x}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\int \left (-1+x+\frac {x \left (-5 \left (11-2 e^3\right )+9 x-2 x^2\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}\right ) \, dx\\ &=3 x+x \log \left (\frac {5 e^x+10 \left (5-e^3\right )-5 x+2 x^2}{2 x}\right )+2 \int \frac {x^3}{-5 e^x-50 \left (1-\frac {e^3}{5}\right )+5 x-2 x^2} \, dx+9 \int \frac {x^2}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\left (5 \left (11-2 e^3\right )\right ) \int \frac {x}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\int \frac {x \left (-5 \left (11-2 e^3\right )+9 x-2 x^2\right )}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx\\ &=3 x+x \log \left (\frac {5 e^x+10 \left (5-e^3\right )-5 x+2 x^2}{2 x}\right )+2 \int \frac {x^3}{-5 e^x-50 \left (1-\frac {e^3}{5}\right )+5 x-2 x^2} \, dx+9 \int \frac {x^2}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\left (5 \left (11-2 e^3\right )\right ) \int \frac {x}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2} \, dx-\int \left (\frac {2 x^3}{-5 e^x-50 \left (1-\frac {e^3}{5}\right )+5 x-2 x^2}+\frac {5 \left (-11+2 e^3\right ) x}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}+\frac {9 x^2}{5 e^x+50 \left (1-\frac {e^3}{5}\right )-5 x+2 x^2}\right ) \, dx\\ &=3 x+x \log \left (\frac {5 e^x+10 \left (5-e^3\right )-5 x+2 x^2}{2 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 34, normalized size = 1.03 \begin {gather*} 3 x+x \log \left (\frac {50-10 e^3+5 e^x-5 x+2 x^2}{2 x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 0.91 \begin {gather*} x \log \left (\frac {2 \, x^{2} - 5 \, x - 10 \, e^{3} + 5 \, e^{x} + 50}{2 \, x}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 30, normalized size = 0.91 \begin {gather*} x \log \left (\frac {2 \, x^{2} - 5 \, x - 10 \, e^{3} + 5 \, e^{x} + 50}{2 \, x}\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 31, normalized size = 0.94
method | result | size |
norman | \(x \ln \left (\frac {5 \,{\mathrm e}^{x}-10 \,{\mathrm e}^{3}+2 x^{2}-5 x +50}{2 x}\right )+3 x\) | \(31\) |
risch | \(x \ln \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )-x \ln \relax (x )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )}{x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )}{x}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )}{x}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )}{x}\right )^{3}}{2}-i \pi x \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{5}+{\mathrm e}^{3}+\frac {x}{2}-\frac {{\mathrm e}^{x}}{2}-5\right )}{x}\right )^{2}+i \pi x +x \ln \relax (5)+3 x\) | \(240\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 34, normalized size = 1.03 \begin {gather*} -x {\left (\log \relax (2) - 3\right )} + x \log \left (2 \, x^{2} - 5 \, x - 10 \, e^{3} + 5 \, e^{x} + 50\right ) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 25, normalized size = 0.76 \begin {gather*} x\,\left (\ln \left (\frac {\frac {5\,{\mathrm {e}}^x}{2}-5\,{\mathrm {e}}^3-\frac {5\,x}{2}+x^2+25}{x}\right )+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.52, size = 29, normalized size = 0.88 \begin {gather*} x \log {\left (\frac {x^{2} - \frac {5 x}{2} + \frac {5 e^{x}}{2} - 5 e^{3} + 25}{x} \right )} + 3 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________