Optimal. Leaf size=18 \[ \frac {4}{x^2 \left (-e^x+x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-12 x+e^x (8+4 x)+8 \log (x)}{e^{2 x} x^3-2 e^x x^4+x^5+\left (2 e^x x^3-2 x^4\right ) \log (x)+x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (1-3 x+e^x (2+x)+2 \log (x)\right )}{x^3 \left (e^x-x+\log (x)\right )^2} \, dx\\ &=4 \int \frac {1-3 x+e^x (2+x)+2 \log (x)}{x^3 \left (e^x-x+\log (x)\right )^2} \, dx\\ &=4 \int \left (-\frac {2+x}{x^3 \left (-e^x+x-\log (x)\right )}+\frac {1-x+x^2-x \log (x)}{x^3 \left (-e^x+x-\log (x)\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {2+x}{x^3 \left (-e^x+x-\log (x)\right )} \, dx\right )+4 \int \frac {1-x+x^2-x \log (x)}{x^3 \left (-e^x+x-\log (x)\right )^2} \, dx\\ &=-\left (4 \int \left (\frac {2}{x^3 \left (-e^x+x-\log (x)\right )}+\frac {1}{x^2 \left (-e^x+x-\log (x)\right )}\right ) \, dx\right )+4 \int \left (\frac {1}{x^3 \left (-e^x+x-\log (x)\right )^2}-\frac {1}{x^2 \left (-e^x+x-\log (x)\right )^2}+\frac {1}{x \left (-e^x+x-\log (x)\right )^2}-\frac {\log (x)}{x^2 \left (-e^x+x-\log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {1}{x^3 \left (-e^x+x-\log (x)\right )^2} \, dx-4 \int \frac {1}{x^2 \left (-e^x+x-\log (x)\right )^2} \, dx+4 \int \frac {1}{x \left (-e^x+x-\log (x)\right )^2} \, dx-4 \int \frac {1}{x^2 \left (-e^x+x-\log (x)\right )} \, dx-4 \int \frac {\log (x)}{x^2 \left (-e^x+x-\log (x)\right )^2} \, dx-8 \int \frac {1}{x^3 \left (-e^x+x-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 16, normalized size = 0.89 \begin {gather*} -\frac {4}{x^2 \left (e^x-x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 22, normalized size = 1.22 \begin {gather*} \frac {4}{x^{3} - x^{2} e^{x} - x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 1.22 \begin {gather*} \frac {4}{x^{3} - x^{2} e^{x} - x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 1.00
method | result | size |
risch | \(\frac {4}{x^{2} \left (-\ln \relax (x )-{\mathrm e}^{x}+x \right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 22, normalized size = 1.22 \begin {gather*} \frac {4}{x^{3} - x^{2} e^{x} - x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.28, size = 15, normalized size = 0.83 \begin {gather*} -\frac {4}{x^2\,\left ({\mathrm {e}}^x-x+\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 19, normalized size = 1.06 \begin {gather*} - \frac {4}{- x^{3} + x^{2} e^{x} + x^{2} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________