Optimal. Leaf size=26 \[ 3+e^5-2 x-e^{-4-e^{75}} \log \left (\frac {x}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 30, normalized size of antiderivative = 1.15, number of steps used = 7, number of rules used = 5, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.147, Rules used = {12, 6742, 43, 2302, 29} \begin {gather*} -2 x-e^{-4-e^{75}} \log (x)+e^{-4-e^{75}} \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 43
Rule 2302
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{-4-e^{75}} \int \frac {1+\left (-1-2 e^{4+e^{75}} x\right ) \log (x)}{x \log (x)} \, dx\\ &=e^{-4-e^{75}} \int \left (-\frac {1+2 e^{4+e^{75}} x}{x}+\frac {1}{x \log (x)}\right ) \, dx\\ &=-\left (e^{-4-e^{75}} \int \frac {1+2 e^{4+e^{75}} x}{x} \, dx\right )+e^{-4-e^{75}} \int \frac {1}{x \log (x)} \, dx\\ &=-\left (e^{-4-e^{75}} \int \left (2 e^{4+e^{75}}+\frac {1}{x}\right ) \, dx\right )+e^{-4-e^{75}} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-2 x-e^{-4-e^{75}} \log (x)+e^{-4-e^{75}} \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 29, normalized size = 1.12 \begin {gather*} -e^{-4-e^{75}} \left (2 e^{4+e^{75}} x+\log (x)-\log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 25, normalized size = 0.96 \begin {gather*} -{\left (2 \, x e^{\left (e^{75} + 4\right )} + \log \relax (x) - \log \left (\log \relax (x)\right )\right )} e^{\left (-e^{75} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 0.96 \begin {gather*} -{\left (2 \, x e^{\left (e^{75} + 4\right )} + \log \relax (x) - \log \left (\log \relax (x)\right )\right )} e^{\left (-e^{75} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.96
method | result | size |
default | \({\mathrm e}^{-{\mathrm e}^{75}-4} \left (-2 \,{\mathrm e}^{{\mathrm e}^{75}} {\mathrm e}^{4} x -\ln \relax (x )+\ln \left (\ln \relax (x )\right )\right )\) | \(25\) |
risch | \(-2 x -\ln \relax (x ) {\mathrm e}^{-{\mathrm e}^{75}-4}+\ln \left (\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{75}-4}\) | \(27\) |
norman | \(-{\mathrm e}^{-{\mathrm e}^{75}} {\mathrm e}^{-4} \ln \relax (x )-2 x +{\mathrm e}^{-{\mathrm e}^{75}} {\mathrm e}^{-4} \ln \left (\ln \relax (x )\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 0.96 \begin {gather*} -{\left (2 \, x e^{\left (e^{75} + 4\right )} + \log \relax (x) - \log \left (\log \relax (x)\right )\right )} e^{\left (-e^{75} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 25, normalized size = 0.96 \begin {gather*} -{\mathrm {e}}^{-{\mathrm {e}}^{75}-4}\,\left (\ln \relax (x)-\ln \left (\ln \relax (x)\right )+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{75}+4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 37, normalized size = 1.42 \begin {gather*} \frac {- 2 x e^{4} e^{e^{75}} - \log {\relax (x )}}{e^{4} e^{e^{75}}} + \frac {\log {\left (\log {\relax (x )} \right )}}{e^{4} e^{e^{75}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________