Optimal. Leaf size=28 \[ 5+e^{-2-2 x} \left (3+\frac {25}{(x-(2-x) x+\log (x))^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-50+50 x-50 x^2-50 x^3+6 x^4-18 x^5+18 x^6-6 x^7+\left (-50 x-18 x^3+36 x^4-18 x^5\right ) \log (x)+\left (18 x^2-18 x^3\right ) \log ^2(x)-6 x \log ^3(x)}{e^{2+2 x} \left (-x^4+3 x^5-3 x^6+x^7\right )+e^{2+2 x} \left (3 x^3-6 x^4+3 x^5\right ) \log (x)+e^{2+2 x} \left (-3 x^2+3 x^3\right ) \log ^2(x)+e^{2+2 x} x \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-2-2 x} \left (-25+25 x-25 x^2-25 x^3+3 x^4-9 x^5+9 x^6-3 x^7-x \left (25+9 x^2-18 x^3+9 x^4\right ) \log (x)-9 (-1+x) x^2 \log ^2(x)-3 x \log ^3(x)\right )}{x ((-1+x) x+\log (x))^3} \, dx\\ &=2 \int \frac {e^{-2-2 x} \left (-25+25 x-25 x^2-25 x^3+3 x^4-9 x^5+9 x^6-3 x^7-x \left (25+9 x^2-18 x^3+9 x^4\right ) \log (x)-9 (-1+x) x^2 \log ^2(x)-3 x \log ^3(x)\right )}{x ((-1+x) x+\log (x))^3} \, dx\\ &=2 \int \left (-3 e^{-2-2 x}-\frac {25 e^{-2-2 x} \left (1-x+2 x^2\right )}{x \left (-x+x^2+\log (x)\right )^3}-\frac {25 e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^2}\right ) \, dx\\ &=-\left (6 \int e^{-2-2 x} \, dx\right )-50 \int \frac {e^{-2-2 x} \left (1-x+2 x^2\right )}{x \left (-x+x^2+\log (x)\right )^3} \, dx-50 \int \frac {e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^2} \, dx\\ &=3 e^{-2-2 x}-50 \int \frac {e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^2} \, dx-50 \int \left (-\frac {e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^3}+\frac {e^{-2-2 x}}{x \left (-x+x^2+\log (x)\right )^3}+\frac {2 e^{-2-2 x} x}{\left (-x+x^2+\log (x)\right )^3}\right ) \, dx\\ &=3 e^{-2-2 x}+50 \int \frac {e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^3} \, dx-50 \int \frac {e^{-2-2 x}}{x \left (-x+x^2+\log (x)\right )^3} \, dx-50 \int \frac {e^{-2-2 x}}{\left (-x+x^2+\log (x)\right )^2} \, dx-100 \int \frac {e^{-2-2 x} x}{\left (-x+x^2+\log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 23, normalized size = 0.82 \begin {gather*} -e^{-2 (1+x)} \left (-3-\frac {25}{((-1+x) x+\log (x))^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 85, normalized size = 3.04 \begin {gather*} \frac {3 \, x^{4} - 6 \, x^{3} + 3 \, x^{2} + 6 \, {\left (x^{2} - x\right )} \log \relax (x) + 3 \, \log \relax (x)^{2} + 25}{2 \, {\left (x^{2} - x\right )} e^{\left (2 \, x + 2\right )} \log \relax (x) + e^{\left (2 \, x + 2\right )} \log \relax (x)^{2} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (2 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (3 \, x^{7} - 9 \, x^{6} + 9 \, x^{5} - 3 \, x^{4} + 3 \, x \log \relax (x)^{3} + 25 \, x^{3} + 9 \, {\left (x^{3} - x^{2}\right )} \log \relax (x)^{2} + 25 \, x^{2} + {\left (9 \, x^{5} - 18 \, x^{4} + 9 \, x^{3} + 25 \, x\right )} \log \relax (x) - 25 \, x + 25\right )}}{x e^{\left (2 \, x + 2\right )} \log \relax (x)^{3} + 3 \, {\left (x^{3} - x^{2}\right )} e^{\left (2 \, x + 2\right )} \log \relax (x)^{2} + 3 \, {\left (x^{5} - 2 \, x^{4} + x^{3}\right )} e^{\left (2 \, x + 2\right )} \log \relax (x) + {\left (x^{7} - 3 \, x^{6} + 3 \, x^{5} - x^{4}\right )} e^{\left (2 \, x + 2\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.04
method | result | size |
risch | \(3 \,{\mathrm e}^{-2 x -2}+\frac {25 \,{\mathrm e}^{-2 x -2}}{\left (x^{2}+\ln \relax (x )-x \right )^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 84, normalized size = 3.00 \begin {gather*} \frac {{\left (3 \, x^{4} - 6 \, x^{3} + 3 \, x^{2} + 6 \, {\left (x^{2} - x\right )} \log \relax (x) + 3 \, \log \relax (x)^{2} + 25\right )} e^{\left (-2 \, x\right )}}{x^{4} e^{2} - 2 \, x^{3} e^{2} + x^{2} e^{2} + e^{2} \log \relax (x)^{2} + 2 \, {\left (x^{2} e^{2} - x e^{2}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {6\,x\,{\ln \relax (x)}^3-50\,x+\ln \relax (x)\,\left (18\,x^5-36\,x^4+18\,x^3+50\,x\right )-{\ln \relax (x)}^2\,\left (18\,x^2-18\,x^3\right )+50\,x^2+50\,x^3-6\,x^4+18\,x^5-18\,x^6+6\,x^7+50}{-x\,{\mathrm {e}}^{2\,x+2}\,{\ln \relax (x)}^3+{\mathrm {e}}^{2\,x+2}\,\left (3\,x^2-3\,x^3\right )\,{\ln \relax (x)}^2-{\mathrm {e}}^{2\,x+2}\,\left (3\,x^5-6\,x^4+3\,x^3\right )\,\ln \relax (x)+{\mathrm {e}}^{2\,x+2}\,\left (-x^7+3\,x^6-3\,x^5+x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.46, size = 78, normalized size = 2.79 \begin {gather*} \frac {\left (3 x^{4} - 6 x^{3} + 6 x^{2} \log {\relax (x )} + 3 x^{2} - 6 x \log {\relax (x )} + 3 \log {\relax (x )}^{2} + 25\right ) e^{- 2 x - 2}}{x^{4} - 2 x^{3} + 2 x^{2} \log {\relax (x )} + x^{2} - 2 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________