Optimal. Leaf size=27 \[ \frac {(4-4 x) \left (e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}}+\log (5)\right )}{3 x} \]
________________________________________________________________________________________
Rubi [B] time = 0.80, antiderivative size = 86, normalized size of antiderivative = 3.19, number of steps used = 4, number of rules used = 3, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {12, 6742, 2288} \begin {gather*} \frac {4 e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} \left (-2 x^2+x^2 \left (-\log \left (\frac {16}{x^2}\right )\right )+x \log \left (\frac {16}{x^2}\right )+2 x\right )}{3 x^2 \left (\frac {2}{\log ^2\left (\frac {16}{x^2}\right )}+\frac {1}{\log \left (\frac {16}{x^2}\right )}\right ) \log ^2\left (\frac {16}{x^2}\right )}+\frac {4 \log (5)}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-4 \log (5) \log ^2\left (\frac {16}{x^2}\right )+e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} \left (8 x-8 x^2+\left (4 x-4 x^2\right ) \log \left (\frac {16}{x^2}\right )-4 \log ^2\left (\frac {16}{x^2}\right )\right )}{x^2 \log ^2\left (\frac {16}{x^2}\right )} \, dx\\ &=\frac {1}{3} \int \left (-\frac {4 \log (5)}{x^2}-\frac {4 e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} \left (-2 x+2 x^2-x \log \left (\frac {16}{x^2}\right )+x^2 \log \left (\frac {16}{x^2}\right )+\log ^2\left (\frac {16}{x^2}\right )\right )}{x^2 \log ^2\left (\frac {16}{x^2}\right )}\right ) \, dx\\ &=\frac {4 \log (5)}{3 x}-\frac {4}{3} \int \frac {e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} \left (-2 x+2 x^2-x \log \left (\frac {16}{x^2}\right )+x^2 \log \left (\frac {16}{x^2}\right )+\log ^2\left (\frac {16}{x^2}\right )\right )}{x^2 \log ^2\left (\frac {16}{x^2}\right )} \, dx\\ &=\frac {4 \log (5)}{3 x}+\frac {4 e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} \left (2 x-2 x^2+x \log \left (\frac {16}{x^2}\right )-x^2 \log \left (\frac {16}{x^2}\right )\right )}{3 x^2 \left (\frac {2}{\log ^2\left (\frac {16}{x^2}\right )}+\frac {1}{\log \left (\frac {16}{x^2}\right )}\right ) \log ^2\left (\frac {16}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 28, normalized size = 1.04 \begin {gather*} -\frac {4 \left (e^{\frac {x}{\log \left (\frac {16}{x^2}\right )}} (-1+x)-\log (5)\right )}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 25, normalized size = 0.93 \begin {gather*} -\frac {4 \, {\left ({\left (x - 1\right )} e^{\left (\frac {x}{\log \left (\frac {16}{x^{2}}\right )}\right )} - \log \relax (5)\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 36, normalized size = 1.33 \begin {gather*} -\frac {4 \, {\left (x e^{\left (\frac {x}{\log \left (\frac {16}{x^{2}}\right )}\right )} - e^{\left (\frac {x}{\log \left (\frac {16}{x^{2}}\right )}\right )} - \log \relax (5)\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 28, normalized size = 1.04
method | result | size |
risch | \(\frac {4 \ln \relax (5)}{3 x}-\frac {4 \left (x -1\right ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}}{3 x}\) | \(28\) |
norman | \(\frac {\frac {4 \ln \relax (5) \ln \left (\frac {16}{x^{2}}\right )}{3}+\frac {4 \ln \left (\frac {16}{x^{2}}\right ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}}{3}-\frac {4 \ln \left (\frac {16}{x^{2}}\right ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}} x}{3}}{x \ln \left (\frac {16}{x^{2}}\right )}\) | \(63\) |
default | \(-\frac {4 \left (x \left (\ln \left (\frac {16}{x^{2}}\right )+2 \ln \relax (x )\right ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}-\left (\ln \left (\frac {16}{x^{2}}\right )+2 \ln \relax (x )\right ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}+2 \ln \relax (x ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}-2 x \ln \relax (x ) {\mathrm e}^{\frac {x}{\ln \left (\frac {16}{x^{2}}\right )}}\right )}{3 x \ln \left (\frac {16}{x^{2}}\right )}+\frac {4 \ln \relax (5)}{3 x}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.55, size = 36, normalized size = 1.33 \begin {gather*} \frac {\frac {4\,{\mathrm {e}}^{\frac {x}{\ln \left (\frac {16}{x^2}\right )}}}{3}+\ln \left ({625}^{1/3}\right )}{x}-\frac {4\,{\mathrm {e}}^{\frac {x}{\ln \left (\frac {16}{x^2}\right )}}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 26, normalized size = 0.96 \begin {gather*} \frac {\left (4 - 4 x\right ) e^{\frac {x}{\log {\left (\frac {16}{x^{2}} \right )}}}}{3 x} + \frac {4 \log {\relax (5 )}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________