Optimal. Leaf size=23 \[ x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 \log (2)+7 \log (2) \log (x)-22 x \log ^2(x)+\left (4 \log (2) \log (x)-8 x \log ^2(x)\right ) \log \left (\frac {-8 x^2 \log (2)+16 x^3 \log (x)}{\log (x)}\right )}{-\log (2) \log (x)+2 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \log (2)-7 \log (2) \log (x)+22 x \log ^2(x)-\left (4 \log (2) \log (x)-8 x \log ^2(x)\right ) \log \left (\frac {-8 x^2 \log (2)+16 x^3 \log (x)}{\log (x)}\right )}{\log (x) (\log (2)-2 x \log (x))} \, dx\\ &=\int \left (\frac {\log (16)-\log (128) \log (x)+22 x \log ^2(x)}{\log (x) (\log (2)-2 x \log (x))}-4 \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )\right ) \, dx\\ &=-\left (4 \int \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right ) \, dx\right )+\int \frac {\log (16)-\log (128) \log (x)+22 x \log ^2(x)}{\log (x) (\log (2)-2 x \log (x))} \, dx\\ &=-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )+4 \int \frac {-\log (2)+\log (4) \log (x)-6 x \log ^2(x)}{\log (x) (\log (2)-2 x \log (x))} \, dx+\int \left (-11+\frac {\log (16)}{\log (2) \log (x)}+\frac {\log (2) \log (16)+x \log (256)}{\log ^2(2)-x \log (4) \log (x)}\right ) \, dx\\ &=-11 x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )+4 \int \left (3-\frac {1}{\log (x)}+\frac {2 x+\log (2)}{-\log (2)+2 x \log (x)}\right ) \, dx+\frac {\log (16) \int \frac {1}{\log (x)} \, dx}{\log (2)}+\int \frac {\log (2) \log (16)+x \log (256)}{\log ^2(2)-x \log (4) \log (x)} \, dx\\ &=x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )+\frac {\log (16) \text {li}(x)}{\log (2)}-4 \int \frac {1}{\log (x)} \, dx+4 \int \frac {2 x+\log (2)}{-\log (2)+2 x \log (x)} \, dx+\int \left (\frac {\log (2) \log (16)}{\log ^2(2)-x \log (4) \log (x)}-\frac {x \log (256)}{-\log ^2(2)+x \log (4) \log (x)}\right ) \, dx\\ &=x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )-4 \text {li}(x)+\frac {\log (16) \text {li}(x)}{\log (2)}+4 \int \left (-\frac {\log (2)}{\log (2)-2 x \log (x)}+\frac {2 x}{-\log (2)+2 x \log (x)}\right ) \, dx+(\log (2) \log (16)) \int \frac {1}{\log ^2(2)-x \log (4) \log (x)} \, dx-\log (256) \int \frac {x}{-\log ^2(2)+x \log (4) \log (x)} \, dx\\ &=x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right )-4 \text {li}(x)+\frac {\log (16) \text {li}(x)}{\log (2)}+8 \int \frac {x}{-\log (2)+2 x \log (x)} \, dx-(4 \log (2)) \int \frac {1}{\log (2)-2 x \log (x)} \, dx+(\log (2) \log (16)) \int \frac {1}{\log ^2(2)-x \log (4) \log (x)} \, dx-\log (256) \int \frac {x}{-\log ^2(2)+x \log (4) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 1.00 \begin {gather*} x-4 x \log \left (8 x^2 \left (2 x-\frac {\log (2)}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 27, normalized size = 1.17 \begin {gather*} -4 \, x \log \left (\frac {8 \, {\left (2 \, x^{3} \log \relax (x) - x^{2} \log \relax (2)\right )}}{\log \relax (x)}\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 35, normalized size = 1.52 \begin {gather*} -x {\left (12 \, \log \relax (2) - 1\right )} - 4 \, x \log \left (2 \, x \log \relax (x) - \log \relax (2)\right ) - 8 \, x \log \relax (x) + 4 \, x \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 27, normalized size = 1.17
method | result | size |
norman | \(x -4 x \ln \left (\frac {16 x^{3} \ln \relax (x )-8 x^{2} \ln \relax (2)}{\ln \relax (x )}\right )\) | \(27\) |
risch | \(-4 x \ln \left (-2 x \ln \relax (x )+\ln \relax (2)\right )+4 x \ln \left (\ln \relax (x )\right )+2 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi x \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )-4 i \pi x -2 i \pi x \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{2}+4 i \pi x \mathrm {csgn}\left (\frac {i x^{2} \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{2}-2 i \pi x \mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-4 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+2 i \pi x \mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{3}-2 i \pi x \mathrm {csgn}\left (\frac {i x^{2} \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{3}-2 i \pi x \,\mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x^{2} \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{2}-2 i \pi x \,\mathrm {csgn}\left (i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )\right ) \mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right )^{2}+2 i \pi x \,\mathrm {csgn}\left (i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )\right ) \mathrm {csgn}\left (\frac {i \left (-2 x \ln \relax (x )+\ln \relax (2)\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-12 x \ln \relax (2)-8 x \ln \relax (x )+x\) | \(392\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 35, normalized size = 1.52 \begin {gather*} -x {\left (12 \, \log \relax (2) - 1\right )} - 4 \, x \log \left (2 \, x \log \relax (x) - \log \relax (2)\right ) - 8 \, x \log \relax (x) + 4 \, x \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {4\,\ln \relax (2)+22\,x\,{\ln \relax (x)}^2-7\,\ln \relax (2)\,\ln \relax (x)+\ln \left (\frac {16\,x^3\,\ln \relax (x)-8\,x^2\,\ln \relax (2)}{\ln \relax (x)}\right )\,\left (8\,x\,{\ln \relax (x)}^2-4\,\ln \relax (2)\,\ln \relax (x)\right )}{2\,x\,{\ln \relax (x)}^2-\ln \relax (2)\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 26, normalized size = 1.13 \begin {gather*} - 4 x \log {\left (\frac {16 x^{3} \log {\relax (x )} - 8 x^{2} \log {\relax (2 )}}{\log {\relax (x )}} \right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________