Optimal. Leaf size=19 \[ 1-\frac {4}{x^2}+e^{-3-2 x (30+x)} x \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 31, normalized size of antiderivative = 1.63, number of steps used = 3, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {14, 2288} \begin {gather*} \frac {e^{-2 x^2-60 x-3} \left (x^2+15 x\right )}{x+15}-\frac {4}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8}{x^3}-e^{-3-60 x-2 x^2} \left (-1+60 x+4 x^2\right )\right ) \, dx\\ &=-\frac {4}{x^2}-\int e^{-3-60 x-2 x^2} \left (-1+60 x+4 x^2\right ) \, dx\\ &=-\frac {4}{x^2}+\frac {e^{-3-60 x-2 x^2} \left (15 x+x^2\right )}{15+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 20, normalized size = 1.05 \begin {gather*} -\frac {4}{x^2}+e^{-3-60 x-2 x^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 23, normalized size = 1.21 \begin {gather*} \frac {x^{2} e^{\left (-2 \, x^{2} - 60 \, x + \log \relax (x) - 3\right )} - 4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 1.32 \begin {gather*} \frac {{\left (x^{3} e^{\left (-2 \, x^{2} - 60 \, x\right )} - 4 \, e^{3}\right )} e^{\left (-3\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 1.05
method | result | size |
default | \(-\frac {4}{x^{2}}+x \,{\mathrm e}^{-2 x^{2}-60 x -3}\) | \(20\) |
risch | \(-\frac {4}{x^{2}}+x \,{\mathrm e}^{-2 x^{2}-60 x -3}\) | \(20\) |
norman | \(\frac {-4+x^{2} {\mathrm e}^{\ln \relax (x )-2 x^{2}-60 x -3}}{x^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 151, normalized size = 7.95 \begin {gather*} \frac {1}{4} \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x + 15 \, \sqrt {2}\right ) e^{447} + \frac {1}{2} i \, \sqrt {2} {\left (-\frac {i \, {\left (x + 15\right )}^{3} \Gamma \left (\frac {3}{2}, 2 \, {\left (x + 15\right )}^{2}\right )}{{\left ({\left (x + 15\right )}^{2}\right )}^{\frac {3}{2}}} + \frac {450 i \, \sqrt {\pi } {\left (x + 15\right )} {\left (\operatorname {erf}\left (\sqrt {2} \sqrt {{\left (x + 15\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 15\right )}^{2}}} + 30 i \, \sqrt {2} e^{\left (-2 \, {\left (x + 15\right )}^{2}\right )}\right )} e^{447} + \frac {15}{2} i \, \sqrt {2} {\left (-\frac {30 i \, \sqrt {\pi } {\left (x + 15\right )} {\left (\operatorname {erf}\left (\sqrt {2} \sqrt {{\left (x + 15\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (x + 15\right )}^{2}}} - i \, \sqrt {2} e^{\left (-2 \, {\left (x + 15\right )}^{2}\right )}\right )} e^{447} - \frac {4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.39, size = 20, normalized size = 1.05 \begin {gather*} x\,{\mathrm {e}}^{-60\,x}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{-2\,x^2}-\frac {4}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 1.00 \begin {gather*} x e^{- 2 x^{2} - 60 x - 3} - \frac {4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________