Optimal. Leaf size=22 \[ 1-e^{2+(2+x)^2 \log ^2(3)}+\log \left (x^4\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 35, normalized size of antiderivative = 1.59, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {14, 2236} \begin {gather*} 4 \log (x)-\exp \left (x^2 \log ^2(3)+4 x \log ^2(3)+2 \left (1+2 \log ^2(3)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2236
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4}{x}+2 \exp \left (4 x \log ^2(3)+x^2 \log ^2(3)+2 \left (1+2 \log ^2(3)\right )\right ) (-2-x) \log ^2(3)\right ) \, dx\\ &=4 \log (x)+\left (2 \log ^2(3)\right ) \int \exp \left (4 x \log ^2(3)+x^2 \log ^2(3)+2 \left (1+2 \log ^2(3)\right )\right ) (-2-x) \, dx\\ &=-\exp \left (4 x \log ^2(3)+x^2 \log ^2(3)+2 \left (1+2 \log ^2(3)\right )\right )+4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.95 \begin {gather*} -e^{2+(2+x)^2 \log ^2(3)}+4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 23, normalized size = 1.05 \begin {gather*} -e^{\left ({\left (x^{2} + 4 \, x + 4\right )} \log \relax (3)^{2} + 2\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 31, normalized size = 1.41 \begin {gather*} -e^{\left (x^{2} \log \relax (3)^{2} + 4 \, x \log \relax (3)^{2} + 4 \, \log \relax (3)^{2} + 2\right )} + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.09
method | result | size |
norman | \(-{\mathrm e}^{\left (x^{2}+4 x +4\right ) \ln \relax (3)^{2}+2}+4 \ln \relax (x )\) | \(24\) |
default | \(4 \ln \relax (x )-{\mathrm e}^{x^{2} \ln \relax (3)^{2}+4 x \ln \relax (3)^{2}+4 \ln \relax (3)^{2}+2}\) | \(32\) |
risch | \(4 \ln \relax (x )-{\mathrm e}^{x^{2} \ln \relax (3)^{2}+4 x \ln \relax (3)^{2}+4 \ln \relax (3)^{2}+2}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 129, normalized size = 5.86 \begin {gather*} 2 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x \log \relax (3) + 2 i \, \log \relax (3)\right ) e^{2} \log \relax (3) + {\left (\frac {2 \, \sqrt {\pi } {\left (x \log \relax (3)^{2} + 2 \, \log \relax (3)^{2}\right )} {\left (\operatorname {erf}\left (\sqrt {-\frac {{\left (x \log \relax (3)^{2} + 2 \, \log \relax (3)^{2}\right )}^{2}}{\log \relax (3)^{2}}}\right ) - 1\right )}}{\sqrt {-\frac {{\left (x \log \relax (3)^{2} + 2 \, \log \relax (3)^{2}\right )}^{2}}{\log \relax (3)^{2}}} \log \relax (3)} - \frac {e^{\left (\frac {{\left (x \log \relax (3)^{2} + 2 \, \log \relax (3)^{2}\right )}^{2}}{\log \relax (3)^{2}}\right )}}{\log \relax (3)}\right )} e^{2} \log \relax (3) + 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 33, normalized size = 1.50 \begin {gather*} 4\,\ln \relax (x)-{\mathrm {e}}^{4\,x\,{\ln \relax (3)}^2}\,{\mathrm {e}}^2\,{\mathrm {e}}^{x^2\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{4\,{\ln \relax (3)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.91 \begin {gather*} - e^{\left (x^{2} + 4 x + 4\right ) \log {\relax (3 )}^{2} + 2} + 4 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________