Optimal. Leaf size=27 \[ \left (3+e^5+x\right ) \left (-9+\frac {3}{4+\frac {5 x}{4}+x^2-\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144-2244 x-1728 x^2-1425 x^3-360 x^4-144 x^5+e^5 \left (48-60 x-96 x^2\right )+\left (1104 x+360 x^2+288 x^3\right ) \log (x)-144 x \log ^2(x)}{256 x+160 x^2+153 x^3+40 x^4+16 x^5+\left (-128 x-40 x^2-32 x^3\right ) \log (x)+16 x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (48-748 x-576 x^2-475 x^3-120 x^4-48 x^5-4 e^5 \left (-4+5 x+8 x^2\right )+8 x \left (46+15 x+12 x^2\right ) \log (x)-48 x \log ^2(x)\right )}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx\\ &=3 \int \frac {48-748 x-576 x^2-475 x^3-120 x^4-48 x^5-4 e^5 \left (-4+5 x+8 x^2\right )+8 x \left (46+15 x+12 x^2\right ) \log (x)-48 x \log ^2(x)}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx\\ &=3 \int \left (-3+\frac {4 \left (4 \left (3+e^5\right )-\left (11+5 e^5\right ) x-\left (29+8 e^5\right ) x^2-8 x^3\right )}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2}+\frac {4}{16+5 x+4 x^2-4 \log (x)}\right ) \, dx\\ &=-9 x+12 \int \frac {4 \left (3+e^5\right )-\left (11+5 e^5\right ) x-\left (29+8 e^5\right ) x^2-8 x^3}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx+12 \int \frac {1}{16+5 x+4 x^2-4 \log (x)} \, dx\\ &=-9 x+12 \int \left (-\frac {11 \left (1+\frac {5 e^5}{11}\right )}{\left (16+5 x+4 x^2-4 \log (x)\right )^2}+\frac {4 \left (3+e^5\right )}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2}-\frac {\left (29+8 e^5\right ) x}{\left (16+5 x+4 x^2-4 \log (x)\right )^2}-\frac {8 x^2}{\left (16+5 x+4 x^2-4 \log (x)\right )^2}\right ) \, dx+12 \int \frac {1}{16+5 x+4 x^2-4 \log (x)} \, dx\\ &=-9 x+12 \int \frac {1}{16+5 x+4 x^2-4 \log (x)} \, dx-96 \int \frac {x^2}{\left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx+\left (48 \left (3+e^5\right )\right ) \int \frac {1}{x \left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx-\left (12 \left (11+5 e^5\right )\right ) \int \frac {1}{\left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx-\left (12 \left (29+8 e^5\right )\right ) \int \frac {x}{\left (16+5 x+4 x^2-4 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 30, normalized size = 1.11 \begin {gather*} -3 \left (3 x+\frac {4 \left (3+e^5+x\right )}{-16-5 x-4 x^2+4 \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 42, normalized size = 1.56 \begin {gather*} -\frac {3 \, {\left (12 \, x^{3} + 15 \, x^{2} - 12 \, x \log \relax (x) + 44 \, x - 4 \, e^{5} - 12\right )}}{4 \, x^{2} + 5 \, x - 4 \, \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 42, normalized size = 1.56 \begin {gather*} -\frac {3 \, {\left (12 \, x^{3} + 15 \, x^{2} - 12 \, x \log \relax (x) + 44 \, x - 4 \, e^{5} - 12\right )}}{4 \, x^{2} + 5 \, x - 4 \, \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 28, normalized size = 1.04
method | result | size |
risch | \(-9 x +\frac {12 \,{\mathrm e}^{5}+36+12 x}{4 x^{2}+5 x -4 \ln \relax (x )+16}\) | \(28\) |
norman | \(\frac {-\frac {303 x}{4}-45 \ln \relax (x )+36 x \ln \relax (x )-36 x^{3}+216+12 \,{\mathrm e}^{5}}{4 x^{2}+5 x -4 \ln \relax (x )+16}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 42, normalized size = 1.56 \begin {gather*} -\frac {3 \, {\left (12 \, x^{3} + 15 \, x^{2} - 12 \, x \log \relax (x) + 44 \, x - 4 \, e^{5} - 12\right )}}{4 \, x^{2} + 5 \, x - 4 \, \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 42, normalized size = 1.56 \begin {gather*} -\frac {3\,\left (44\,x-4\,{\mathrm {e}}^5-12\,x\,\ln \relax (x)+15\,x^2+12\,x^3-12\right )}{5\,x-4\,\ln \relax (x)+4\,x^2+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.07 \begin {gather*} - 9 x + \frac {- 12 x - 12 e^{5} - 36}{- 4 x^{2} - 5 x + 4 \log {\relax (x )} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________