Optimal. Leaf size=21 \[ \frac {\left (4+x+\frac {5}{3} \log ^2\left (\frac {14 x}{3}\right )\right )^2}{x} \]
________________________________________________________________________________________
Rubi [B] time = 0.19, antiderivative size = 78, normalized size of antiderivative = 3.71, number of steps used = 18, number of rules used = 7, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 14, 43, 2334, 2301, 2305, 2304} \begin {gather*} x+\frac {16}{x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x}+\frac {40 \log ^2\left (\frac {14 x}{3}\right )}{3 x}-\frac {10 \log ^2(x)}{3}-\frac {20}{3} \left (\frac {4}{x}-\log (x)\right ) \log \left (\frac {14 x}{3}\right )+\frac {80 \log \left (\frac {14 x}{3}\right )}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2301
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {-144+9 x^2+(240+60 x) \log \left (\frac {14 x}{3}\right )-120 \log ^2\left (\frac {14 x}{3}\right )+100 \log ^3\left (\frac {14 x}{3}\right )-25 \log ^4\left (\frac {14 x}{3}\right )}{x^2} \, dx\\ &=\frac {1}{9} \int \left (\frac {9 \left (-16+x^2\right )}{x^2}+\frac {60 (4+x) \log \left (\frac {14 x}{3}\right )}{x^2}-\frac {120 \log ^2\left (\frac {14 x}{3}\right )}{x^2}+\frac {100 \log ^3\left (\frac {14 x}{3}\right )}{x^2}-\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {25}{9} \int \frac {\log ^4\left (\frac {14 x}{3}\right )}{x^2} \, dx\right )+\frac {20}{3} \int \frac {(4+x) \log \left (\frac {14 x}{3}\right )}{x^2} \, dx+\frac {100}{9} \int \frac {\log ^3\left (\frac {14 x}{3}\right )}{x^2} \, dx-\frac {40}{3} \int \frac {\log ^2\left (\frac {14 x}{3}\right )}{x^2} \, dx+\int \frac {-16+x^2}{x^2} \, dx\\ &=-\frac {20}{3} \left (\frac {4}{x}-\log (x)\right ) \log \left (\frac {14 x}{3}\right )+\frac {40 \log ^2\left (\frac {14 x}{3}\right )}{3 x}-\frac {100 \log ^3\left (\frac {14 x}{3}\right )}{9 x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x}-\frac {20}{3} \int \frac {-4+x \log (x)}{x^2} \, dx-\frac {100}{9} \int \frac {\log ^3\left (\frac {14 x}{3}\right )}{x^2} \, dx-\frac {80}{3} \int \frac {\log \left (\frac {14 x}{3}\right )}{x^2} \, dx+\frac {100}{3} \int \frac {\log ^2\left (\frac {14 x}{3}\right )}{x^2} \, dx+\int \left (1-\frac {16}{x^2}\right ) \, dx\\ &=\frac {128}{3 x}+x+\frac {80 \log \left (\frac {14 x}{3}\right )}{3 x}-\frac {20}{3} \left (\frac {4}{x}-\log (x)\right ) \log \left (\frac {14 x}{3}\right )-\frac {20 \log ^2\left (\frac {14 x}{3}\right )}{x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x}-\frac {20}{3} \int \left (-\frac {4}{x^2}+\frac {\log (x)}{x}\right ) \, dx-\frac {100}{3} \int \frac {\log ^2\left (\frac {14 x}{3}\right )}{x^2} \, dx+\frac {200}{3} \int \frac {\log \left (\frac {14 x}{3}\right )}{x^2} \, dx\\ &=-\frac {152}{3 x}+x-\frac {40 \log \left (\frac {14 x}{3}\right )}{x}-\frac {20}{3} \left (\frac {4}{x}-\log (x)\right ) \log \left (\frac {14 x}{3}\right )+\frac {40 \log ^2\left (\frac {14 x}{3}\right )}{3 x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x}-\frac {20}{3} \int \frac {\log (x)}{x} \, dx-\frac {200}{3} \int \frac {\log \left (\frac {14 x}{3}\right )}{x^2} \, dx\\ &=\frac {16}{x}+x-\frac {10 \log ^2(x)}{3}+\frac {80 \log \left (\frac {14 x}{3}\right )}{3 x}-\frac {20}{3} \left (\frac {4}{x}-\log (x)\right ) \log \left (\frac {14 x}{3}\right )+\frac {40 \log ^2\left (\frac {14 x}{3}\right )}{3 x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 49, normalized size = 2.33 \begin {gather*} \frac {16}{x}+x+\frac {10}{3} \log ^2\left (\frac {14 x}{3}\right )+\frac {40 \log ^2\left (\frac {14 x}{3}\right )}{3 x}+\frac {25 \log ^4\left (\frac {14 x}{3}\right )}{9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 31, normalized size = 1.48 \begin {gather*} \frac {25 \, \log \left (\frac {14}{3} \, x\right )^{4} + 30 \, {\left (x + 4\right )} \log \left (\frac {14}{3} \, x\right )^{2} + 9 \, x^{2} + 144}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 33, normalized size = 1.57 \begin {gather*} \frac {10}{3} \, {\left (\frac {4}{x} + 1\right )} \log \left (\frac {14}{3} \, x\right )^{2} + \frac {25 \, \log \left (\frac {14}{3} \, x\right )^{4}}{9 \, x} + x + \frac {16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.67
method | result | size |
norman | \(\frac {16+x^{2}+\frac {40 \ln \left (\frac {14 x}{3}\right )^{2}}{3}+\frac {25 \ln \left (\frac {14 x}{3}\right )^{4}}{9}+\frac {10 x \ln \left (\frac {14 x}{3}\right )^{2}}{3}}{x}\) | \(35\) |
risch | \(\frac {25 \ln \left (\frac {14 x}{3}\right )^{4}}{9 x}+\frac {10 \left (4+x \right ) \ln \left (\frac {14 x}{3}\right )^{2}}{3 x}+\frac {x^{2}+16}{x}\) | \(36\) |
derivativedivides | \(\frac {25 \ln \left (\frac {14 x}{3}\right )^{4}}{9 x}+\frac {40 \ln \left (\frac {14 x}{3}\right )^{2}}{3 x}+\frac {16}{x}+\frac {10 \ln \left (\frac {14 x}{3}\right )^{2}}{3}+x\) | \(38\) |
default | \(\frac {25 \ln \left (\frac {14 x}{3}\right )^{4}}{9 x}+\frac {40 \ln \left (\frac {14 x}{3}\right )^{2}}{3 x}+\frac {16}{x}+\frac {10 \ln \left (\frac {14 x}{3}\right )^{2}}{3}+x\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 105, normalized size = 5.00 \begin {gather*} \frac {10}{3} \, \log \left (\frac {14}{3} \, x\right )^{2} + x + \frac {25 \, {\left (\log \left (\frac {14}{3} \, x\right )^{4} + 4 \, \log \left (\frac {14}{3} \, x\right )^{3} + 12 \, \log \left (\frac {14}{3} \, x\right )^{2} + 24 \, \log \left (\frac {14}{3} \, x\right ) + 24\right )}}{9 \, x} - \frac {100 \, {\left (\log \left (\frac {14}{3} \, x\right )^{3} + 3 \, \log \left (\frac {14}{3} \, x\right )^{2} + 6 \, \log \left (\frac {14}{3} \, x\right ) + 6\right )}}{9 \, x} + \frac {40 \, {\left (\log \left (\frac {14}{3} \, x\right )^{2} + 2 \, \log \left (\frac {14}{3} \, x\right ) + 2\right )}}{3 \, x} - \frac {80 \, \log \left (\frac {14}{3} \, x\right )}{3 \, x} - \frac {32}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.43, size = 32, normalized size = 1.52 \begin {gather*} x+\frac {\frac {25\,{\ln \left (\frac {14\,x}{3}\right )}^4}{9}+\frac {40\,{\ln \left (\frac {14\,x}{3}\right )}^2}{3}+16}{x}+\frac {10\,{\ln \left (\frac {14\,x}{3}\right )}^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 34, normalized size = 1.62 \begin {gather*} x + \frac {\left (10 x + 40\right ) \log {\left (\frac {14 x}{3} \right )}^{2}}{3 x} + \frac {25 \log {\left (\frac {14 x}{3} \right )}^{4}}{9 x} + \frac {16}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________