Optimal. Leaf size=25 \[ e^{-14-x^3} \left (2+\frac {e^{3-x}}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.43, antiderivative size = 79, normalized size of antiderivative = 3.16, number of steps used = 6, number of rules used = 4, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {6688, 6742, 2209, 2288} \begin {gather*} 4 e^{-x^3-14}+\frac {4 e^{-x^3-x-11} \left (3 x^3+x\right )}{x^2 \left (3 x^2+1\right )}+\frac {e^{-x^3-2 x-8} \left (3 x^3+2 x\right )}{x^3 \left (3 x^2+2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2209
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-14-2 x-x^3} \left (e^3+2 e^x x\right ) \left (-6 e^x x^4-e^3 \left (2+2 x+3 x^3\right )\right )}{x^3} \, dx\\ &=\int \left (-12 e^{-14-x^3} x^2-\frac {4 e^{-11-x-x^3} \left (1+x+3 x^3\right )}{x^2}-\frac {e^{-8-2 x-x^3} \left (2+2 x+3 x^3\right )}{x^3}\right ) \, dx\\ &=-\left (4 \int \frac {e^{-11-x-x^3} \left (1+x+3 x^3\right )}{x^2} \, dx\right )-12 \int e^{-14-x^3} x^2 \, dx-\int \frac {e^{-8-2 x-x^3} \left (2+2 x+3 x^3\right )}{x^3} \, dx\\ &=4 e^{-14-x^3}+\frac {4 e^{-11-x-x^3} \left (x+3 x^3\right )}{x^2 \left (1+3 x^2\right )}+\frac {e^{-8-2 x-x^3} \left (2 x+3 x^3\right )}{x^3 \left (2+3 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 28, normalized size = 1.12 \begin {gather*} \frac {e^{-14-2 x-x^3} \left (e^3+2 e^x x\right )^2}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 40, normalized size = 1.60 \begin {gather*} e^{\left (-x^{3} + \log \left (\frac {{\left (4 \, x^{2} e^{\left (2 \, x + 6\right )} + 4 \, x e^{\left (x + 9\right )} + e^{12}\right )} e^{\left (-2 \, x - 6\right )}}{x^{2}}\right ) - 14\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 51, normalized size = 2.04 \begin {gather*} \frac {{\left (4 \, x^{2} e^{\left (2 \, x^{3} + 2 \, x\right )} + 4 \, x e^{\left (2 \, x^{3} + x + 3\right )} + e^{\left (2 \, x^{3} + 6\right )}\right )} e^{\left (-3 \, x^{3} - 2 \, x - 14\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 516, normalized size = 20.64
method | result | size |
risch | \(\frac {\left (4 \,{\mathrm e}^{2 x} x^{2}+4 \,{\mathrm e}^{3+x} x +{\mathrm e}^{6}\right ) {\mathrm e}^{-2 x -14+i \pi \mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right )^{2} \mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )\right )+\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right )^{2}}{2}-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2} {\mathrm e}^{-2 x}}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2} {\mathrm e}^{-2 x}}{x^{2}}\right )^{3}}{2}-i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )-\frac {i \pi \,\mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )\right )^{2}}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2} {\mathrm e}^{-2 x}}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2} {\mathrm e}^{-2 x}}{x^{2}}\right )^{2}}{2}-\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right )^{3}}{2}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-\frac {i \pi \mathrm {csgn}\left (i \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{-2 x} \left (2 \,{\mathrm e}^{x} x +{\mathrm e}^{3}\right )^{2}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right )}{2}+\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}}{2}-x^{3}}}{x^{2}}\) | \(516\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 34, normalized size = 1.36 \begin {gather*} \frac {{\left (4 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x e^{\left (x + 3\right )} + e^{6}\right )} e^{\left (-x^{3} - 2 \, x - 14\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.65, size = 44, normalized size = 1.76 \begin {gather*} 4\,{\mathrm {e}}^{-14}\,{\mathrm {e}}^{-x^3}+\frac {{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-8}\,{\mathrm {e}}^{-x^3}}{x^2}+\frac {4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-11}\,{\mathrm {e}}^{-x^3}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 34, normalized size = 1.36 \begin {gather*} \frac {\left (4 x^{2} + 4 x e^{3} e^{- x} + e^{6} e^{- 2 x}\right ) e^{- x^{3} - 14}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________