3.87.84 \(\int e^{-x} (-3 x^2+x^3-e^x \log (4)) \, dx\)

Optimal. Leaf size=25 \[ 2-\log \left (\frac {5}{4}\right )+x \left (-e^{-x} x^2-\log (4)\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 16, normalized size of antiderivative = 0.64, number of steps used = 9, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {6742, 2176, 2194} \begin {gather*} -e^{-x} x^3-x \log (4) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-3*x^2 + x^3 - E^x*Log[4])/E^x,x]

[Out]

-(x^3/E^x) - x*Log[4]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-3 e^{-x} x^2+e^{-x} x^3-\log (4)\right ) \, dx\\ &=-x \log (4)-3 \int e^{-x} x^2 \, dx+\int e^{-x} x^3 \, dx\\ &=3 e^{-x} x^2-e^{-x} x^3-x \log (4)+3 \int e^{-x} x^2 \, dx-6 \int e^{-x} x \, dx\\ &=6 e^{-x} x-e^{-x} x^3-x \log (4)-6 \int e^{-x} \, dx+6 \int e^{-x} x \, dx\\ &=6 e^{-x}-e^{-x} x^3-x \log (4)+6 \int e^{-x} \, dx\\ &=-e^{-x} x^3-x \log (4)\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 16, normalized size = 0.64 \begin {gather*} -e^{-x} x^3-x \log (4) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-3*x^2 + x^3 - E^x*Log[4])/E^x,x]

[Out]

-(x^3/E^x) - x*Log[4]

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 17, normalized size = 0.68 \begin {gather*} -{\left (x^{3} + 2 \, x e^{x} \log \relax (2)\right )} e^{\left (-x\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*exp(x)*log(2)+x^3-3*x^2)/exp(x),x, algorithm="fricas")

[Out]

-(x^3 + 2*x*e^x*log(2))*e^(-x)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 15, normalized size = 0.60 \begin {gather*} -x^{3} e^{\left (-x\right )} - 2 \, x \log \relax (2) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*exp(x)*log(2)+x^3-3*x^2)/exp(x),x, algorithm="giac")

[Out]

-x^3*e^(-x) - 2*x*log(2)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 16, normalized size = 0.64




method result size



default \(-x^{3} {\mathrm e}^{-x}-2 x \ln \relax (2)\) \(16\)
risch \(-x^{3} {\mathrm e}^{-x}-2 x \ln \relax (2)\) \(16\)
norman \(\left (-x^{3}-2 x \ln \relax (2) {\mathrm e}^{x}\right ) {\mathrm e}^{-x}\) \(19\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*exp(x)*ln(2)+x^3-3*x^2)/exp(x),x,method=_RETURNVERBOSE)

[Out]

-x^3/exp(x)-2*x*ln(2)

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 39, normalized size = 1.56 \begin {gather*} -{\left (x^{3} + 3 \, x^{2} + 6 \, x + 6\right )} e^{\left (-x\right )} + 3 \, {\left (x^{2} + 2 \, x + 2\right )} e^{\left (-x\right )} - 2 \, x \log \relax (2) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*exp(x)*log(2)+x^3-3*x^2)/exp(x),x, algorithm="maxima")

[Out]

-(x^3 + 3*x^2 + 6*x + 6)*e^(-x) + 3*(x^2 + 2*x + 2)*e^(-x) - 2*x*log(2)

________________________________________________________________________________________

mupad [B]  time = 5.33, size = 15, normalized size = 0.60 \begin {gather*} -2\,x\,\ln \relax (2)-x^3\,{\mathrm {e}}^{-x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-x)*(2*exp(x)*log(2) + 3*x^2 - x^3),x)

[Out]

- 2*x*log(2) - x^3*exp(-x)

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 14, normalized size = 0.56 \begin {gather*} - x^{3} e^{- x} - 2 x \log {\relax (2 )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-2*exp(x)*ln(2)+x**3-3*x**2)/exp(x),x)

[Out]

-x**3*exp(-x) - 2*x*log(2)

________________________________________________________________________________________