Optimal. Leaf size=25 \[ 4 e^{6-2 x+2 (-x+\log (2))^2-\log ^2(4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 30, normalized size of antiderivative = 1.20, number of steps used = 2, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2244, 2236} \begin {gather*} 4 \exp \left (2 x^2-2 x (1+\log (4))+6-\log ^2(4)+2 \log ^2(2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2236
Rule 2244
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \exp \left (6+2 x^2+2 \log ^2(2)-\log ^2(4)-2 x (1+\log (4))\right ) (16 x-8 (1+\log (4))) \, dx\\ &=4 \exp \left (6+2 x^2+2 \log ^2(2)-\log ^2(4)-2 x (1+\log (4))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 23, normalized size = 0.92 \begin {gather*} e^{\frac {1}{2} \left (11-2 \log ^2(4)+(1-2 x+\log (4))^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 0.96 \begin {gather*} 4 \, e^{\left (2 \, x^{2} - 4 \, x \log \relax (2) - 2 \, \log \relax (2)^{2} - 2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.96 \begin {gather*} 4 \, e^{\left (2 \, x^{2} - 4 \, x \log \relax (2) - 2 \, \log \relax (2)^{2} - 2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
gosper | \(4 \,{\mathrm e}^{-2 \ln \relax (2)^{2}+x \ln \left (\frac {1}{16}\right )+2 x^{2}-2 x +6}\) | \(25\) |
default | \(4 \,{\mathrm e}^{-2 \ln \relax (2)^{2}+x \ln \left (\frac {1}{16}\right )+2 x^{2}-2 x +6}\) | \(25\) |
norman | \(4 \,{\mathrm e}^{-2 \ln \relax (2)^{2}+x \ln \left (\frac {1}{16}\right )+2 x^{2}-2 x +6}\) | \(25\) |
risch | \(4 \,4^{-2 x} {\mathrm e}^{-2 \ln \relax (2)^{2}+6+2 x^{2}-2 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 24, normalized size = 0.96 \begin {gather*} 4 \, e^{\left (2 \, x^{2} - 4 \, x \log \relax (2) - 2 \, \log \relax (2)^{2} - 2 \, x + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 28, normalized size = 1.12 \begin {gather*} \frac {4\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^6\,{\mathrm {e}}^{-2\,{\ln \relax (2)}^2}\,{\mathrm {e}}^{2\,x^2}}{2^{4\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 26, normalized size = 1.04 \begin {gather*} 4 e^{2 x^{2} - 4 x \log {\relax (2 )} - 2 x - 2 \log {\relax (2 )}^{2} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________