Optimal. Leaf size=32 \[ 4+2 \left (-1+\frac {4}{x}\right )-2 x-\frac {x}{\left (-5-\frac {4}{x}+\frac {\log (x)}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {512+1920 x+2528 x^2+1480 x^3+614 x^4+255 x^5+\left (-384-960 x-696 x^2-240 x^3-153 x^4\right ) \log (x)+\left (96+120 x+24 x^2+30 x^3\right ) \log ^2(x)+\left (-8-2 x^2\right ) \log ^3(x)}{-64 x^2-240 x^3-300 x^4-125 x^5+\left (48 x^2+120 x^3+75 x^4\right ) \log (x)+\left (-12 x^2-15 x^3\right ) \log ^2(x)+x^2 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-512-1920 x-2528 x^2-1480 x^3-614 x^4-255 x^5+3 \left (128+320 x+232 x^2+80 x^3+51 x^4\right ) \log (x)-6 \left (16+20 x+4 x^2+5 x^3\right ) \log ^2(x)+2 \left (4+x^2\right ) \log ^3(x)}{x^2 (4+5 x-\log (x))^3} \, dx\\ &=\int \left (-\frac {2 \left (4+x^2\right )}{x^2}+\frac {2 x^2 (-1+5 x)}{(4+5 x-\log (x))^3}-\frac {3 x^2}{(4+5 x-\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {4+x^2}{x^2} \, dx\right )+2 \int \frac {x^2 (-1+5 x)}{(4+5 x-\log (x))^3} \, dx-3 \int \frac {x^2}{(4+5 x-\log (x))^2} \, dx\\ &=-\left (2 \int \left (1+\frac {4}{x^2}\right ) \, dx\right )+2 \int \left (-\frac {x^2}{(4+5 x-\log (x))^3}+\frac {5 x^3}{(4+5 x-\log (x))^3}\right ) \, dx-3 \int \frac {x^2}{(4+5 x-\log (x))^2} \, dx\\ &=\frac {8}{x}-2 x-2 \int \frac {x^2}{(4+5 x-\log (x))^3} \, dx-3 \int \frac {x^2}{(4+5 x-\log (x))^2} \, dx+10 \int \frac {x^3}{(4+5 x-\log (x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 23, normalized size = 0.72 \begin {gather*} \frac {8}{x}-2 x-\frac {x^3}{(-4-5 x+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 87, normalized size = 2.72 \begin {gather*} -\frac {51 \, x^{4} + 80 \, x^{3} + 2 \, {\left (x^{2} - 4\right )} \log \relax (x)^{2} - 168 \, x^{2} - 4 \, {\left (5 \, x^{3} + 4 \, x^{2} - 20 \, x - 16\right )} \log \relax (x) - 320 \, x - 128}{25 \, x^{3} + x \log \relax (x)^{2} + 40 \, x^{2} - 2 \, {\left (5 \, x^{2} + 4 \, x\right )} \log \relax (x) + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 68, normalized size = 2.12 \begin {gather*} -2 \, x - \frac {5 \, x^{4} - x^{3}}{125 \, x^{3} - 50 \, x^{2} \log \relax (x) + 5 \, x \log \relax (x)^{2} + 175 \, x^{2} - 30 \, x \log \relax (x) - \log \relax (x)^{2} + 40 \, x + 8 \, \log \relax (x) - 16} + \frac {8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 28, normalized size = 0.88
method | result | size |
risch | \(-\frac {2 \left (x^{2}-4\right )}{x}-\frac {x^{3}}{\left (5 x -\ln \relax (x )+4\right )^{2}}\) | \(28\) |
norman | \(\frac {128+296 x^{2}+\frac {1856 x}{5}+15 x^{3} \ln \relax (x )-\frac {x \ln \relax (x )^{3}}{5}-24 x^{2} \ln \relax (x )-\frac {544 x \ln \relax (x )}{5}+\frac {24 x \ln \relax (x )^{2}}{5}-51 x^{4}+8 \ln \relax (x )^{2}-64 \ln \relax (x )}{x \left (5 x -\ln \relax (x )+4\right )^{2}}+\frac {\ln \relax (x )}{5}\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 87, normalized size = 2.72 \begin {gather*} -\frac {51 \, x^{4} + 80 \, x^{3} + 2 \, {\left (x^{2} - 4\right )} \log \relax (x)^{2} - 168 \, x^{2} - 4 \, {\left (5 \, x^{3} + 4 \, x^{2} - 20 \, x - 16\right )} \log \relax (x) - 320 \, x - 128}{25 \, x^{3} + x \log \relax (x)^{2} + 40 \, x^{2} - 2 \, {\left (5 \, x^{2} + 4 \, x\right )} \log \relax (x) + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {1920\,x-\ln \relax (x)\,\left (153\,x^4+240\,x^3+696\,x^2+960\,x+384\right )-{\ln \relax (x)}^3\,\left (2\,x^2+8\right )+{\ln \relax (x)}^2\,\left (30\,x^3+24\,x^2+120\,x+96\right )+2528\,x^2+1480\,x^3+614\,x^4+255\,x^5+512}{{\ln \relax (x)}^2\,\left (15\,x^3+12\,x^2\right )-\ln \relax (x)\,\left (75\,x^4+120\,x^3+48\,x^2\right )-x^2\,{\ln \relax (x)}^3+64\,x^2+240\,x^3+300\,x^4+125\,x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 34, normalized size = 1.06 \begin {gather*} - \frac {x^{3}}{25 x^{2} + 40 x + \left (- 10 x - 8\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 16} - 2 x + \frac {8}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________