Optimal. Leaf size=26 \[ \frac {2-e^{4 x-4 x^2}}{\log (4) \log (-1+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.64, antiderivative size = 70, normalized size of antiderivative = 2.69, number of steps used = 7, number of rules used = 6, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.109, Rules used = {12, 6742, 2390, 2302, 30, 2288} \begin {gather*} \frac {2}{\log (4) \log (x-1)}-\frac {e^{4 (1-x) x} \left (2 x^2 \log (x-1)-3 x \log (x-1)+\log (x-1)\right )}{(1-2 x) (1-x) \log (4) \log ^2(x-1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2288
Rule 2302
Rule 2390
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-2+e^{4 x-4 x^2}+e^{4 x-4 x^2} \left (4-12 x+8 x^2\right ) \log (-1+x)}{(-1+x) \log ^2(-1+x)} \, dx}{\log (4)}\\ &=\frac {\int \left (-\frac {2}{(-1+x) \log ^2(-1+x)}+\frac {e^{-4 (-1+x) x} \left (1+4 \log (-1+x)-12 x \log (-1+x)+8 x^2 \log (-1+x)\right )}{(-1+x) \log ^2(-1+x)}\right ) \, dx}{\log (4)}\\ &=\frac {\int \frac {e^{-4 (-1+x) x} \left (1+4 \log (-1+x)-12 x \log (-1+x)+8 x^2 \log (-1+x)\right )}{(-1+x) \log ^2(-1+x)} \, dx}{\log (4)}-\frac {2 \int \frac {1}{(-1+x) \log ^2(-1+x)} \, dx}{\log (4)}\\ &=-\frac {e^{4 (1-x) x} \left (\log (-1+x)-3 x \log (-1+x)+2 x^2 \log (-1+x)\right )}{(1-2 x) (1-x) \log (4) \log ^2(-1+x)}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-1+x\right )}{\log (4)}\\ &=-\frac {e^{4 (1-x) x} \left (\log (-1+x)-3 x \log (-1+x)+2 x^2 \log (-1+x)\right )}{(1-2 x) (1-x) \log (4) \log ^2(-1+x)}-\frac {2 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (-1+x)\right )}{\log (4)}\\ &=\frac {2}{\log (4) \log (-1+x)}-\frac {e^{4 (1-x) x} \left (\log (-1+x)-3 x \log (-1+x)+2 x^2 \log (-1+x)\right )}{(1-2 x) (1-x) \log (4) \log ^2(-1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.89, size = 23, normalized size = 0.88 \begin {gather*} \frac {2-e^{-4 (-1+x) x}}{\log (4) \log (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 24, normalized size = 0.92 \begin {gather*} -\frac {e^{\left (-4 \, x^{2} + 4 \, x\right )} - 2}{2 \, \log \relax (2) \log \left (x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 24, normalized size = 0.92 \begin {gather*} -\frac {e^{\left (-4 \, x^{2} + 4 \, x\right )} - 2}{2 \, \log \relax (2) \log \left (x - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.41, size = 22, normalized size = 0.85
method | result | size |
risch | \(-\frac {{\mathrm e}^{-4 x \left (x -1\right )}-2}{2 \ln \relax (2) \ln \left (x -1\right )}\) | \(22\) |
default | \(\frac {-\frac {{\mathrm e}^{-4 x \left (x -1\right )}}{\ln \left (x -1\right )}+\frac {2}{\ln \left (x -1\right )}}{2 \ln \relax (2)}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 32, normalized size = 1.23 \begin {gather*} -\frac {\frac {e^{\left (-4 \, x^{2} + 4 \, x\right )}}{\log \left (x - 1\right )} - \frac {2}{\log \left (x - 1\right )}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.66, size = 34, normalized size = 1.31 \begin {gather*} \frac {1}{\ln \left (x-1\right )\,\ln \relax (2)}-\frac {{\mathrm {e}}^{4\,x-4\,x^2}}{2\,\ln \left (x-1\right )\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 29, normalized size = 1.12 \begin {gather*} - \frac {e^{- 4 x^{2} + 4 x}}{2 \log {\relax (2 )} \log {\left (x - 1 \right )}} + \frac {1}{\log {\relax (2 )} \log {\left (x - 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________