Optimal. Leaf size=28 \[ \frac {\left (-3-x+\frac {3 x^3}{\log ^2(5) \log ^2(x)}\right ) (-2+\log (3+x))}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {36 x^3+12 x^4+\left (-36 x^3-9 x^4\right ) \log (x)+\left (-18-9 x-x^2\right ) \log ^2(5) \log ^3(x)+\left (-18 x^3-6 x^4+\left (18 x^3+6 x^4\right ) \log (x)+(9+3 x) \log ^2(5) \log ^3(x)\right ) \log (3+x)}{\left (3 x^2+x^3\right ) \log ^2(5) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {36 x^3+12 x^4+\left (-36 x^3-9 x^4\right ) \log (x)+\left (-18-9 x-x^2\right ) \log ^2(5) \log ^3(x)+\left (-18 x^3-6 x^4+\left (18 x^3+6 x^4\right ) \log (x)+(9+3 x) \log ^2(5) \log ^3(x)\right ) \log (3+x)}{\left (3 x^2+x^3\right ) \log ^3(x)} \, dx}{\log ^2(5)}\\ &=\frac {\int \frac {36 x^3+12 x^4+\left (-36 x^3-9 x^4\right ) \log (x)+\left (-18-9 x-x^2\right ) \log ^2(5) \log ^3(x)+\left (-18 x^3-6 x^4+\left (18 x^3+6 x^4\right ) \log (x)+(9+3 x) \log ^2(5) \log ^3(x)\right ) \log (3+x)}{x^2 (3+x) \log ^3(x)} \, dx}{\log ^2(5)}\\ &=\frac {\int \left (-\frac {\log ^2(5) (6+x-3 \log (3+x))}{x^2}-\frac {6 x (-2+\log (3+x))}{\log ^3(x)}+\frac {-9 x (4+x)+6 x (3+x) \log (3+x)}{(3+x) \log ^2(x)}\right ) \, dx}{\log ^2(5)}\\ &=\frac {\int \frac {-9 x (4+x)+6 x (3+x) \log (3+x)}{(3+x) \log ^2(x)} \, dx}{\log ^2(5)}-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}-\int \frac {6+x-3 \log (3+x)}{x^2} \, dx\\ &=\frac {\int \left (-\frac {9 x (4+x)}{(3+x) \log ^2(x)}+\frac {6 x \log (3+x)}{\log ^2(x)}\right ) \, dx}{\log ^2(5)}-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}-\int \left (\frac {6+x}{x^2}-\frac {3 \log (3+x)}{x^2}\right ) \, dx\\ &=3 \int \frac {\log (3+x)}{x^2} \, dx-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}+\frac {6 \int \frac {x \log (3+x)}{\log ^2(x)} \, dx}{\log ^2(5)}-\frac {9 \int \frac {x (4+x)}{(3+x) \log ^2(x)} \, dx}{\log ^2(5)}-\int \frac {6+x}{x^2} \, dx\\ &=-\frac {3 \log (3+x)}{x}+3 \int \frac {1}{x (3+x)} \, dx-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}+\frac {6 \int \frac {x \log (3+x)}{\log ^2(x)} \, dx}{\log ^2(5)}-\frac {9 \int \frac {x (4+x)}{(3+x) \log ^2(x)} \, dx}{\log ^2(5)}-\int \left (\frac {6}{x^2}+\frac {1}{x}\right ) \, dx\\ &=\frac {6}{x}-\log (x)-\frac {3 \log (3+x)}{x}-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}+\frac {6 \int \frac {x \log (3+x)}{\log ^2(x)} \, dx}{\log ^2(5)}-\frac {9 \int \frac {x (4+x)}{(3+x) \log ^2(x)} \, dx}{\log ^2(5)}+\int \frac {1}{x} \, dx-\int \frac {1}{3+x} \, dx\\ &=\frac {6}{x}-\log (3+x)-\frac {3 \log (3+x)}{x}-\frac {6 \int \frac {x (-2+\log (3+x))}{\log ^3(x)} \, dx}{\log ^2(5)}+\frac {6 \int \frac {x \log (3+x)}{\log ^2(x)} \, dx}{\log ^2(5)}-\frac {9 \int \frac {x (4+x)}{(3+x) \log ^2(x)} \, dx}{\log ^2(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 34, normalized size = 1.21 \begin {gather*} \frac {6+\frac {3 x^3 (-2+\log (3+x))}{\log ^2(5) \log ^2(x)}-(3+x) \log (3+x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 52, normalized size = 1.86 \begin {gather*} \frac {6 \, \log \relax (5)^{2} \log \relax (x)^{2} - 6 \, x^{3} - {\left ({\left (x + 3\right )} \log \relax (5)^{2} \log \relax (x)^{2} - 3 \, x^{3}\right )} \log \left (x + 3\right )}{x \log \relax (5)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 58, normalized size = 2.07 \begin {gather*} -\frac {\log \relax (5)^{2} \log \left (x + 3\right ) + 3 \, {\left (\frac {\log \relax (5)^{2}}{x} - \frac {x^{2}}{\log \relax (x)^{2}}\right )} \log \left (x + 3\right ) - \frac {6 \, \log \relax (5)^{2}}{x} + \frac {6 \, x^{2}}{\log \relax (x)^{2}}}{\log \relax (5)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.41, size = 77, normalized size = 2.75
method | result | size |
risch | \(-\frac {3 \left (\ln \relax (x )^{2} \ln \relax (5)^{2}-x^{3}\right ) \ln \left (3+x \right )}{\ln \relax (5)^{2} x \ln \relax (x )^{2}}-\frac {\ln \relax (5)^{2} \ln \left (3+x \right ) x \ln \relax (x )^{2}-6 \ln \relax (x )^{2} \ln \relax (5)^{2}+6 x^{3}}{\ln \relax (5)^{2} x \ln \relax (x )^{2}}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 58, normalized size = 2.07 \begin {gather*} \frac {6 \, \log \relax (5)^{2} \log \relax (x)^{2} - 6 \, x^{3} + {\left (3 \, x^{3} - {\left (x \log \relax (5)^{2} + 3 \, \log \relax (5)^{2}\right )} \log \relax (x)^{2}\right )} \log \left (x + 3\right )}{x \log \relax (5)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.79, size = 51, normalized size = 1.82 \begin {gather*} \frac {6}{x}-\frac {3\,\ln \left (x+3\right )}{x}-\ln \left (x+3\right )-\frac {6\,x^2}{{\ln \relax (5)}^2\,{\ln \relax (x)}^2}+\frac {3\,x^2\,\ln \left (x+3\right )}{{\ln \relax (5)}^2\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 56, normalized size = 2.00 \begin {gather*} - \frac {6 x^{2}}{\log {\relax (5 )}^{2} \log {\relax (x )}^{2}} - \log {\left (x + 3 \right )} + \frac {\left (3 x^{3} - 3 \log {\relax (5 )}^{2} \log {\relax (x )}^{2}\right ) \log {\left (x + 3 \right )}}{x \log {\relax (5 )}^{2} \log {\relax (x )}^{2}} + \frac {6}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________