Optimal. Leaf size=33 \[ \frac {1}{4} \log \left (-5 (1-x)+x-\left (-e^3+x-x \left (e^x+x\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.73, antiderivative size = 70, normalized size of antiderivative = 2.12, number of steps used = 3, number of rules used = 3, integrand size = 128, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6741, 12, 6684} \begin {gather*} \frac {1}{4} \log \left (x^4+2 e^x x^3-2 x^3-2 e^x x^2+e^{2 x} x^2+\left (1+2 e^3\right ) x^2+2 e^{x+3} x-2 \left (3+e^3\right ) x+e^6+5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3+x-3 x^2+2 x^3+e^3 (-1+2 x)+e^{2 x} \left (x+x^2\right )+e^x \left (-2 x+2 x^2+x^3+e^3 (1+x)\right )}{2 \left (5 \left (1+\frac {e^6}{5}\right )+2 e^{3+x} x-6 \left (1+\frac {e^3}{3}\right ) x-2 e^x x^2+e^{2 x} x^2+\left (1+2 e^3\right ) x^2-2 x^3+2 e^x x^3+x^4\right )} \, dx\\ &=\frac {1}{2} \int \frac {-3+x-3 x^2+2 x^3+e^3 (-1+2 x)+e^{2 x} \left (x+x^2\right )+e^x \left (-2 x+2 x^2+x^3+e^3 (1+x)\right )}{5 \left (1+\frac {e^6}{5}\right )+2 e^{3+x} x-6 \left (1+\frac {e^3}{3}\right ) x-2 e^x x^2+e^{2 x} x^2+\left (1+2 e^3\right ) x^2-2 x^3+2 e^x x^3+x^4} \, dx\\ &=\frac {1}{4} \log \left (5+e^6+2 e^{3+x} x-2 \left (3+e^3\right ) x-2 e^x x^2+e^{2 x} x^2+\left (1+2 e^3\right ) x^2-2 x^3+2 e^x x^3+x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.50, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-3+x-3 x^2+2 x^3+e^3 (-1+2 x)+e^{2 x} \left (x+x^2\right )+e^x \left (-2 x+2 x^2+x^3+e^3 (1+x)\right )}{10+2 e^6-12 x+2 x^2+2 e^{2 x} x^2-4 x^3+2 x^4+e^3 \left (-4 x+4 x^2\right )+e^x \left (4 e^3 x-4 x^2+4 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 66, normalized size = 2.00 \begin {gather*} \frac {1}{2} \, \log \relax (x) + \frac {1}{4} \, \log \left (\frac {x^{4} - 2 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + x^{2} + 2 \, {\left (x^{2} - x\right )} e^{3} + 2 \, {\left (x^{3} - x^{2} + x e^{3}\right )} e^{x} - 6 \, x + e^{6} + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 62, normalized size = 1.88 \begin {gather*} \frac {1}{4} \, \log \left (x^{4} + 2 \, x^{3} e^{x} - 2 \, x^{3} + 2 \, x^{2} e^{3} + x^{2} e^{\left (2 \, x\right )} - 2 \, x^{2} e^{x} + x^{2} - 2 \, x e^{3} + 2 \, x e^{\left (x + 3\right )} - 6 \, x + e^{6} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 64, normalized size = 1.94
method | result | size |
risch | \(\frac {\ln \relax (x )}{2}+\frac {\ln \left ({\mathrm e}^{2 x}+\frac {2 \left (x^{2}+{\mathrm e}^{3}-x \right ) {\mathrm e}^{x}}{x}+\frac {x^{4}+2 x^{2} {\mathrm e}^{3}-2 x^{3}+{\mathrm e}^{6}-2 x \,{\mathrm e}^{3}+x^{2}-6 x +5}{x^{2}}\right )}{4}\) | \(64\) |
norman | \(\frac {\ln \left (2 \,{\mathrm e}^{2 x} x^{2}+4 \,{\mathrm e}^{x} x^{3}+2 x^{4}+4 x \,{\mathrm e}^{3} {\mathrm e}^{x}-4 \,{\mathrm e}^{x} x^{2}+4 x^{2} {\mathrm e}^{3}-4 x^{3}+2 \,{\mathrm e}^{6}-4 x \,{\mathrm e}^{3}+2 x^{2}-12 x +10\right )}{4}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 66, normalized size = 2.00 \begin {gather*} \frac {1}{2} \, \log \relax (x) + \frac {1}{4} \, \log \left (\frac {x^{4} - 2 \, x^{3} + x^{2} {\left (2 \, e^{3} + 1\right )} + x^{2} e^{\left (2 \, x\right )} - 2 \, x {\left (e^{3} + 3\right )} + 2 \, {\left (x^{3} - x^{2} + x e^{3}\right )} e^{x} + e^{6} + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 62, normalized size = 1.88 \begin {gather*} \frac {\ln \left ({\mathrm {e}}^6-6\,x+2\,x\,{\mathrm {e}}^{x+3}-2\,x^2\,{\mathrm {e}}^x+2\,x^3\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^3+x^2\,{\mathrm {e}}^{2\,x}+2\,x^2\,{\mathrm {e}}^3+x^2-2\,x^3+x^4+5\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 70, normalized size = 2.12 \begin {gather*} \frac {\log {\relax (x )}}{2} + \frac {\log {\left (e^{2 x} + \frac {\left (2 x^{2} - 2 x + 2 e^{3}\right ) e^{x}}{x} + \frac {x^{4} - 2 x^{3} + x^{2} + 2 x^{2} e^{3} - 2 x e^{3} - 6 x + 5 + e^{6}}{x^{2}} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________