Optimal. Leaf size=23 \[ \frac {1}{2} x^2 \left (2+e^2+x+\frac {5}{\log (5)}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.02, antiderivative size = 49, normalized size of antiderivative = 2.13, number of steps used = 5, number of rules used = 3, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {12, 6, 2304} \begin {gather*} \frac {x^3}{2}+\frac {1}{4} \left (3+2 e^2\right ) x^2+\frac {x^2}{4}-\frac {1}{2} x^2 \log (x)+\frac {5 x^2}{2 \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (10 x+\left (3 x+2 e^2 x+3 x^2\right ) \log (5)-2 x \log (5) \log (x)\right ) \, dx}{2 \log (5)}\\ &=\frac {5 x^2}{2 \log (5)}+\frac {1}{2} \int \left (3 x+2 e^2 x+3 x^2\right ) \, dx-\int x \log (x) \, dx\\ &=\frac {x^2}{4}+\frac {5 x^2}{2 \log (5)}-\frac {1}{2} x^2 \log (x)+\frac {1}{2} \int \left (\left (3+2 e^2\right ) x+3 x^2\right ) \, dx\\ &=\frac {x^2}{4}+\frac {1}{4} \left (3+2 e^2\right ) x^2+\frac {x^3}{2}+\frac {5 x^2}{2 \log (5)}-\frac {1}{2} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 42, normalized size = 1.83 \begin {gather*} \frac {5 x^2+2 x^2 \log (5)+e^2 x^2 \log (5)+x^3 \log (5)-x^2 \log (5) \log (x)}{\log (25)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 39, normalized size = 1.70 \begin {gather*} -\frac {x^{2} \log \relax (5) \log \relax (x) - 5 \, x^{2} - {\left (x^{3} + x^{2} e^{2} + 2 \, x^{2}\right )} \log \relax (5)}{2 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 50, normalized size = 2.17 \begin {gather*} \frac {10 \, x^{2} + {\left (2 \, x^{3} + 2 \, x^{2} e^{2} + 3 \, x^{2}\right )} \log \relax (5) - {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} \log \relax (5)}{4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 33, normalized size = 1.43
method | result | size |
risch | \(\frac {x^{2} {\mathrm e}^{2}}{2}+\frac {x^{3}}{2}+x^{2}+\frac {5 x^{2}}{2 \ln \relax (5)}-\frac {x^{2} \ln \relax (x )}{2}\) | \(33\) |
norman | \(\frac {x^{3}}{2}-\frac {x^{2} \ln \relax (x )}{2}+\frac {\left ({\mathrm e}^{2} \ln \relax (5)+2 \ln \relax (5)+5\right ) x^{2}}{2 \ln \relax (5)}\) | \(34\) |
default | \(\frac {\ln \relax (5) x^{2} {\mathrm e}^{2}+x^{3} \ln \relax (5)+2 x^{2} \ln \relax (5)+5 x^{2}-x^{2} \ln \relax (5) \ln \relax (x )}{2 \ln \relax (5)}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 50, normalized size = 2.17 \begin {gather*} \frac {10 \, x^{2} + {\left (2 \, x^{3} + 2 \, x^{2} e^{2} + 3 \, x^{2}\right )} \log \relax (5) - {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} \log \relax (5)}{4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.19, size = 30, normalized size = 1.30 \begin {gather*} \frac {x^2\,\left (2\,\ln \relax (5)+{\mathrm {e}}^2\,\ln \relax (5)+x\,\ln \relax (5)-\ln \relax (5)\,\ln \relax (x)+5\right )}{2\,\ln \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 34, normalized size = 1.48 \begin {gather*} \frac {x^{3}}{2} - \frac {x^{2} \log {\relax (x )}}{2} + \frac {x^{2} \left (2 \log {\relax (5 )} + 5 + e^{2} \log {\relax (5 )}\right )}{2 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________