Optimal. Leaf size=25 \[ \frac {(1+x)^2 \left (x-\frac {2}{3} \log (5) \log (\log (x))\right )^2}{e^5 x} \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-12 x-24 x^2-12 x^3\right ) \log (5)+\left (9 x^2+36 x^3+27 x^4\right ) \log (x)+\left (\left (8+16 x+8 x^2\right ) \log ^2(5)+\left (-24 x^2-24 x^3\right ) \log (5) \log (x)\right ) \log (\log (x))+\left (-4+4 x^2\right ) \log ^2(5) \log (x) \log ^2(\log (x))}{9 e^5 x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (-12 x-24 x^2-12 x^3\right ) \log (5)+\left (9 x^2+36 x^3+27 x^4\right ) \log (x)+\left (\left (8+16 x+8 x^2\right ) \log ^2(5)+\left (-24 x^2-24 x^3\right ) \log (5) \log (x)\right ) \log (\log (x))+\left (-4+4 x^2\right ) \log ^2(5) \log (x) \log ^2(\log (x))}{x^2 \log (x)} \, dx}{9 e^5}\\ &=\frac {\int \frac {(1+x) (3 x-2 \log (5) \log (\log (x))) (-4 (1+x) \log (5)+\log (x) (3 x (1+3 x)-2 (-1+x) \log (5) \log (\log (x))))}{x^2 \log (x)} \, dx}{9 e^5}\\ &=\frac {\int \left (\frac {3 (1+x) \left (-4 \log (5)-4 x \log (5)+3 x \log (x)+9 x^2 \log (x)\right )}{x \log (x)}-\frac {8 (1+x) \log (5) \left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x^2 \log (x)}+\frac {4 (-1+x) (1+x) \log ^2(5) \log ^2(\log (x))}{x^2}\right ) \, dx}{9 e^5}\\ &=\frac {\int \frac {(1+x) \left (-4 \log (5)-4 x \log (5)+3 x \log (x)+9 x^2 \log (x)\right )}{x \log (x)} \, dx}{3 e^5}-\frac {(8 \log (5)) \int \frac {(1+x) \left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x^2 \log (x)} \, dx}{9 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \frac {(-1+x) (1+x) \log ^2(\log (x))}{x^2} \, dx}{9 e^5}\\ &=\frac {\int \left (3 \left (1+4 x+3 x^2\right )-\frac {4 (1+x)^2 \log (5)}{x \log (x)}\right ) \, dx}{3 e^5}-\frac {(8 \log (5)) \int \left (\frac {\left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x^2 \log (x)}+\frac {\left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x \log (x)}\right ) \, dx}{9 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \left (\log ^2(\log (x))-\frac {\log ^2(\log (x))}{x^2}\right ) \, dx}{9 e^5}\\ &=\frac {\int \left (1+4 x+3 x^2\right ) \, dx}{e^5}-\frac {(8 \log (5)) \int \frac {\left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x^2 \log (x)} \, dx}{9 e^5}-\frac {(8 \log (5)) \int \frac {\left (-\log (5)-x \log (5)+3 x^2 \log (x)\right ) \log (\log (x))}{x \log (x)} \, dx}{9 e^5}-\frac {(4 \log (5)) \int \frac {(1+x)^2}{x \log (x)} \, dx}{3 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}\\ &=\frac {x}{e^5}+\frac {2 x^2}{e^5}+\frac {x^3}{e^5}-\frac {(8 \log (5)) \int \left (3-\frac {(1+x) \log (5)}{x^2 \log (x)}\right ) \log (\log (x)) \, dx}{9 e^5}-\frac {(8 \log (5)) \int \left (3 x \log (\log (x))-\frac {\log (5) \log (\log (x))}{\log (x)}-\frac {\log (5) \log (\log (x))}{x \log (x)}\right ) \, dx}{9 e^5}-\frac {(4 \log (5)) \int \left (\frac {2}{\log (x)}+\frac {1}{x \log (x)}+\frac {x}{\log (x)}\right ) \, dx}{3 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}\\ &=\frac {x}{e^5}+\frac {2 x^2}{e^5}+\frac {x^3}{e^5}-\frac {(8 \log (5)) \int \left (3 \log (\log (x))-\frac {\log (5) \log (\log (x))}{x^2 \log (x)}-\frac {\log (5) \log (\log (x))}{x \log (x)}\right ) \, dx}{9 e^5}-\frac {(4 \log (5)) \int \frac {1}{x \log (x)} \, dx}{3 e^5}-\frac {(4 \log (5)) \int \frac {x}{\log (x)} \, dx}{3 e^5}-\frac {(8 \log (5)) \int \frac {1}{\log (x)} \, dx}{3 e^5}-\frac {(8 \log (5)) \int x \log (\log (x)) \, dx}{3 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{\log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{x \log (x)} \, dx}{9 e^5}\\ &=\frac {x}{e^5}+\frac {2 x^2}{e^5}+\frac {x^3}{e^5}-\frac {4 x^2 \log (5) \log (\log (x))}{3 e^5}-\frac {8 \log (5) \text {li}(x)}{3 e^5}+\frac {(4 \log (5)) \int \frac {x}{\log (x)} \, dx}{3 e^5}-\frac {(4 \log (5)) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )}{3 e^5}-\frac {(4 \log (5)) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )}{3 e^5}-\frac {(8 \log (5)) \int \log (\log (x)) \, dx}{3 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{\log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{x^2 \log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{x \log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,\log (x)\right )}{9 e^5}\\ &=\frac {x}{e^5}+\frac {2 x^2}{e^5}+\frac {x^3}{e^5}-\frac {4 \text {Ei}(2 \log (x)) \log (5)}{3 e^5}-\frac {4 \log (5) \log (\log (x))}{3 e^5}-\frac {8 x \log (5) \log (\log (x))}{3 e^5}-\frac {4 x^2 \log (5) \log (\log (x))}{3 e^5}+\frac {4 \log ^2(5) \log ^2(\log (x))}{9 e^5}-\frac {8 \log (5) \text {li}(x)}{3 e^5}+\frac {(4 \log (5)) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )}{3 e^5}+\frac {(8 \log (5)) \int \frac {1}{\log (x)} \, dx}{3 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{\log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{x^2 \log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,\log (x)\right )}{9 e^5}\\ &=\frac {x}{e^5}+\frac {2 x^2}{e^5}+\frac {x^3}{e^5}-\frac {4 \log (5) \log (\log (x))}{3 e^5}-\frac {8 x \log (5) \log (\log (x))}{3 e^5}-\frac {4 x^2 \log (5) \log (\log (x))}{3 e^5}+\frac {8 \log ^2(5) \log ^2(\log (x))}{9 e^5}+\frac {\left (4 \log ^2(5)\right ) \int \log ^2(\log (x)) \, dx}{9 e^5}-\frac {\left (4 \log ^2(5)\right ) \int \frac {\log ^2(\log (x))}{x^2} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{\log (x)} \, dx}{9 e^5}+\frac {\left (8 \log ^2(5)\right ) \int \frac {\log (\log (x))}{x^2 \log (x)} \, dx}{9 e^5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 28, normalized size = 1.12 \begin {gather*} \frac {(1+x)^2 (3 x-2 \log (5) \log (\log (x)))^2}{9 e^5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 59, normalized size = 2.36 \begin {gather*} \frac {{\left (4 \, {\left (x^{2} + 2 \, x + 1\right )} \log \relax (5)^{2} \log \left (\log \relax (x)\right )^{2} + 9 \, x^{4} + 18 \, x^{3} - 12 \, {\left (x^{3} + 2 \, x^{2} + x\right )} \log \relax (5) \log \left (\log \relax (x)\right ) + 9 \, x^{2}\right )} e^{\left (-5\right )}}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 70, normalized size = 2.80 \begin {gather*} \frac {1}{9} \, {\left (9 \, x^{3} + 4 \, {\left (x \log \relax (5)^{2} + 2 \, \log \relax (5)^{2} + \frac {\log \relax (5)^{2}}{x}\right )} \log \left (\log \relax (x)\right )^{2} + 18 \, x^{2} - 12 \, {\left (x^{2} \log \relax (5) + 2 \, x \log \relax (5)\right )} \log \left (\log \relax (x)\right ) - 12 \, \log \relax (5) \log \left (\log \relax (x)\right ) + 9 \, x\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 65, normalized size = 2.60
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-5} \ln \relax (5)^{2} \left (x^{2}+2 x +1\right ) \ln \left (\ln \relax (x )\right )^{2}}{9 x}-\frac {4 \,{\mathrm e}^{-5} \ln \relax (5) x \left (2+x \right ) \ln \left (\ln \relax (x )\right )}{3}+x^{3} {\mathrm e}^{-5}+2 x^{2} {\mathrm e}^{-5}+x \,{\mathrm e}^{-5}-\frac {4 \,{\mathrm e}^{-5} \ln \left (\ln \relax (x )\right ) \ln \relax (5)}{3}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 105, normalized size = 4.20 \begin {gather*} \frac {1}{9} \, {\left (9 \, x^{3} + 18 \, x^{2} - 12 \, {\left (x^{2} \log \left (\log \relax (x)\right ) - {\rm Ei}\left (2 \, \log \relax (x)\right )\right )} \log \relax (5) - 24 \, {\left (x \log \left (\log \relax (x)\right ) - {\rm Ei}\left (\log \relax (x)\right )\right )} \log \relax (5) - 12 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (5) - 24 \, {\rm Ei}\left (\log \relax (x)\right ) \log \relax (5) - 12 \, \log \relax (5) \log \left (\log \relax (x)\right ) + \frac {4 \, {\left (x^{2} \log \relax (5)^{2} + 2 \, x \log \relax (5)^{2} + \log \relax (5)^{2}\right )} \log \left (\log \relax (x)\right )^{2}}{x} + 9 \, x\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.64, size = 94, normalized size = 3.76 \begin {gather*} {\ln \left (\ln \relax (x)\right )}^2\,\left (\frac {8\,{\mathrm {e}}^{-5}\,{\ln \relax (5)}^2}{9}+\frac {8\,x\,{\mathrm {e}}^{-5}\,{\ln \relax (5)}^2}{9}-\frac {{\mathrm {e}}^{-5}\,\left (4\,x^2\,{\ln \relax (5)}^2-4\,{\ln \relax (5)}^2\right )}{9\,x}\right )+x\,{\mathrm {e}}^{-5}+2\,x^2\,{\mathrm {e}}^{-5}+x^3\,{\mathrm {e}}^{-5}-\frac {\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{-5}\,\left (4\,\ln \relax (5)\,x^2+8\,\ln \relax (5)\,x\right )}{3}-\frac {4\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{-5}\,\ln \relax (5)}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.65, size = 100, normalized size = 4.00 \begin {gather*} \frac {x^{3}}{e^{5}} + \frac {2 x^{2}}{e^{5}} + \frac {x}{e^{5}} + \frac {\left (- 4 x^{2} \log {\relax (5 )} - 8 x \log {\relax (5 )}\right ) \log {\left (\log {\relax (x )} \right )}}{3 e^{5}} - \frac {4 \log {\relax (5 )} \log {\left (\log {\relax (x )} \right )}}{3 e^{5}} + \frac {\left (4 x^{2} \log {\relax (5 )}^{2} + 8 x \log {\relax (5 )}^{2} + 4 \log {\relax (5 )}^{2}\right ) \log {\left (\log {\relax (x )} \right )}^{2}}{9 x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________