Optimal. Leaf size=18 \[ 5-2 x+\frac {10}{\log \left (x \log \left (-4+x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.43, antiderivative size = 17, normalized size of antiderivative = 0.94, number of steps used = 4, number of rules used = 3, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {1593, 6688, 6686} \begin {gather*} \frac {10}{\log \left (x \log \left (x^2-4\right )\right )}-2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20 x^2+\left (40-10 x^2\right ) \log \left (-4+x^2\right )+\left (8 x-2 x^3\right ) \log \left (-4+x^2\right ) \log ^2\left (x \log \left (-4+x^2\right )\right )}{x \left (-4+x^2\right ) \log \left (-4+x^2\right ) \log ^2\left (x \log \left (-4+x^2\right )\right )} \, dx\\ &=\int \left (-2+\frac {-\frac {10}{x}-\frac {20 x}{\left (-4+x^2\right ) \log \left (-4+x^2\right )}}{\log ^2\left (x \log \left (-4+x^2\right )\right )}\right ) \, dx\\ &=-2 x+\int \frac {-\frac {10}{x}-\frac {20 x}{\left (-4+x^2\right ) \log \left (-4+x^2\right )}}{\log ^2\left (x \log \left (-4+x^2\right )\right )} \, dx\\ &=-2 x+\frac {10}{\log \left (x \log \left (-4+x^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.94 \begin {gather*} -2 x+\frac {10}{\log \left (x \log \left (-4+x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 26, normalized size = 1.44 \begin {gather*} -\frac {2 \, {\left (x \log \left (x \log \left (x^{2} - 4\right )\right ) - 5\right )}}{\log \left (x \log \left (x^{2} - 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.11, size = 17, normalized size = 0.94 \begin {gather*} -2 \, x + \frac {10}{\log \left (x \log \left (x^{2} - 4\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.45, size = 116, normalized size = 6.44
method | result | size |
risch | \(-2 x +\frac {20 i}{\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (i x \ln \left (x^{2}-4\right )\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (x^{2}-4\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \left (x^{2}-4\right )\right ) \mathrm {csgn}\left (i x \ln \left (x^{2}-4\right )\right )^{2}+\pi \mathrm {csgn}\left (i x \ln \left (x^{2}-4\right )\right )^{3}+2 i \ln \relax (x )+2 i \ln \left (\ln \left (x^{2}-4\right )\right )}\) | \(116\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 35, normalized size = 1.94 \begin {gather*} -\frac {2 \, {\left (x \log \relax (x) + x \log \left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right ) - 5\right )}}{\log \relax (x) + \log \left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.47, size = 17, normalized size = 0.94 \begin {gather*} \frac {10}{\ln \left (x\,\ln \left (x^2-4\right )\right )}-2\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 14, normalized size = 0.78 \begin {gather*} - 2 x + \frac {10}{\log {\left (x \log {\left (x^{2} - 4 \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________