Optimal. Leaf size=29 \[ 4 x^2 \left (x+\log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [C] time = 1.42, antiderivative size = 63, normalized size of antiderivative = 2.17, number of steps used = 22, number of rules used = 11, integrand size = 142, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6688, 2309, 2178, 6742, 43, 30, 2555, 12, 14, 2366, 6482} \begin {gather*} -4 \text {Ei}(2 \log (x))-4 \log (x) \text {Ei}(2 \log (x))+4 (\log (x)+1) \text {Ei}(2 \log (x))+4 x^3+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 43
Rule 2178
Rule 2309
Rule 2366
Rule 2555
Rule 6482
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4 x}{\log (x)}+\frac {4 x \left (-4+7 x-2 x^2+(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right ) \left (-1+3 x+2 \log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right )\right )\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx\\ &=-\left (4 \int \frac {x}{\log (x)} \, dx\right )+4 \int \frac {x \left (-4+7 x-2 x^2+(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right ) \left (-1+3 x+2 \log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right )\right )\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx\\ &=4 \int \left (\frac {x \left (-4+7 x-2 x^2+2 \log \left (e^{-2 x} (-2+x) x^2\right )-7 x \log \left (e^{-2 x} (-2+x) x^2\right )+3 x^2 \log \left (e^{-2 x} (-2+x) x^2\right )\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}+2 x \log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right )\right ) \, dx-4 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-4 \text {Ei}(2 \log (x))+4 \int \frac {x \left (-4+7 x-2 x^2+2 \log \left (e^{-2 x} (-2+x) x^2\right )-7 x \log \left (e^{-2 x} (-2+x) x^2\right )+3 x^2 \log \left (e^{-2 x} (-2+x) x^2\right )\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx+8 \int x \log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right ) \, dx\\ &=-4 \text {Ei}(2 \log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )+4 \int \frac {x \left (4-7 x+2 x^2-\left (2-7 x+3 x^2\right ) \log \left (e^{-2 x} (-2+x) x^2\right )\right )}{(2-x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx-8 \int -\frac {1}{2} x \left (\frac {1}{\log (x)}+\frac {4-7 x+2 x^2+(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx\\ &=-4 \text {Ei}(2 \log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )+4 \int \left (x (-1+3 x)-\frac {x \left (4-7 x+2 x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx+4 \int x \left (\frac {1}{\log (x)}+\frac {4-7 x+2 x^2+(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx\\ &=-4 \text {Ei}(2 \log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )+4 \int x (-1+3 x) \, dx+4 \int \left (\frac {x (1+\log (x))}{\log (x)}+\frac {x \left (4-7 x+2 x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx-4 \int \frac {x \left (4-7 x+2 x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx\\ &=-4 \text {Ei}(2 \log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )+4 \int \left (-x+3 x^2\right ) \, dx+4 \int \frac {x (1+\log (x))}{\log (x)} \, dx-4 \int \left (-\frac {2}{\log \left (e^{-2 x} (-2+x) x^2\right )}-\frac {4}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}-\frac {3 x}{\log \left (e^{-2 x} (-2+x) x^2\right )}+\frac {2 x^2}{\log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx+4 \int \frac {x \left (4-7 x+2 x^2\right )}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx\\ &=-2 x^2+4 x^3-4 \text {Ei}(2 \log (x))+4 \text {Ei}(2 \log (x)) (1+\log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )-4 \int \frac {\text {Ei}(2 \log (x))}{x} \, dx+4 \int \left (-\frac {2}{\log \left (e^{-2 x} (-2+x) x^2\right )}-\frac {4}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )}-\frac {3 x}{\log \left (e^{-2 x} (-2+x) x^2\right )}+\frac {2 x^2}{\log \left (e^{-2 x} (-2+x) x^2\right )}\right ) \, dx+8 \int \frac {1}{\log \left (e^{-2 x} (-2+x) x^2\right )} \, dx-8 \int \frac {x^2}{\log \left (e^{-2 x} (-2+x) x^2\right )} \, dx+12 \int \frac {x}{\log \left (e^{-2 x} (-2+x) x^2\right )} \, dx+16 \int \frac {1}{(-2+x) \log \left (e^{-2 x} (-2+x) x^2\right )} \, dx\\ &=-2 x^2+4 x^3-4 \text {Ei}(2 \log (x))+4 \text {Ei}(2 \log (x)) (1+\log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )-4 \operatorname {Subst}(\int \text {Ei}(2 x) \, dx,x,\log (x))\\ &=4 x^3-4 \text {Ei}(2 \log (x))-4 \text {Ei}(2 \log (x)) \log (x)+4 \text {Ei}(2 \log (x)) (1+\log (x))+4 x^2 \log \left (\frac {\log \left (-e^{-2 x} (2-x) x^2\right )}{x \log (x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 33, normalized size = 1.14 \begin {gather*} 4 x^3+4 x^2 \log \left (\frac {\log \left (e^{-2 x} (-2+x) x^2\right )}{x \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.36, size = 35, normalized size = 1.21 \begin {gather*} 4 \, x^{3} + 4 \, x^{2} \log \left (\frac {\log \left ({\left (x^{3} - 2 \, x^{2}\right )} e^{\left (-2 \, x\right )}\right )}{x \log \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.98, size = 39, normalized size = 1.34 \begin {gather*} 4 \, x^{3} - 4 \, x^{2} \log \relax (x) + 4 \, x^{2} \log \left (-2 \, x + \log \left (x - 2\right ) + 2 \, \log \relax (x)\right ) - 4 \, x^{2} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.07, size = 0, normalized size = 0.00 \[\int \frac {\left (8 x^{2}-16 x \right ) \ln \relax (x ) \ln \left (\left (x^{3}-2 x^{2}\right ) {\mathrm e}^{-2 x}\right ) \ln \left (\frac {\ln \left (\left (x^{3}-2 x^{2}\right ) {\mathrm e}^{-2 x}\right )}{x \ln \relax (x )}\right )+\left (\left (12 x^{3}-28 x^{2}+8 x \right ) \ln \relax (x )-4 x^{2}+8 x \right ) \ln \left (\left (x^{3}-2 x^{2}\right ) {\mathrm e}^{-2 x}\right )+\left (-8 x^{3}+28 x^{2}-16 x \right ) \ln \relax (x )}{\left (x -2\right ) \ln \relax (x ) \ln \left (\left (x^{3}-2 x^{2}\right ) {\mathrm e}^{-2 x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 39, normalized size = 1.34 \begin {gather*} 4 \, x^{3} - 4 \, x^{2} \log \relax (x) + 4 \, x^{2} \log \left (-2 \, x + \log \left (x - 2\right ) + 2 \, \log \relax (x)\right ) - 4 \, x^{2} \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.75, size = 34, normalized size = 1.17 \begin {gather*} 4\,x^2\,\left (x+\ln \left (\frac {\ln \left (-{\mathrm {e}}^{-2\,x}\,\left (2\,x^2-x^3\right )\right )}{x\,\ln \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.25, size = 70, normalized size = 2.41 \begin {gather*} 4 x^{3} + \left (4 x^{2} - \frac {8}{3}\right ) \log {\left (\frac {\log {\left (\left (x^{3} - 2 x^{2}\right ) e^{- 2 x} \right )}}{x \log {\relax (x )}} \right )} - \frac {8 \log {\relax (x )}}{3} - \frac {8 \log {\left (\log {\relax (x )} \right )}}{3} + \frac {8 \log {\left (\log {\left (\left (x^{3} - 2 x^{2}\right ) e^{- 2 x} \right )} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________