Optimal. Leaf size=25 \[ \frac {4 e^{\frac {4 e^{-2 e^x}}{\left (-30+\sqrt {e}\right )^2}}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 2.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}} \left (\left (-3600+240 \sqrt {e}-4 e\right ) e^{2 e^x}-32 e^x x\right )}{900 x^2-60 \sqrt {e} x^2+e x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}} \left (\left (-3600+240 \sqrt {e}-4 e\right ) e^{2 e^x}-32 e^x x\right )}{\left (900-60 \sqrt {e}\right ) x^2+e x^2} \, dx\\ &=\int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}} \left (\left (-3600+240 \sqrt {e}-4 e\right ) e^{2 e^x}-32 e^x x\right )}{\left (900-60 \sqrt {e}+e\right ) x^2} \, dx\\ &=\frac {\int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}} \left (\left (-3600+240 \sqrt {e}-4 e\right ) e^{2 e^x}-32 e^x x\right )}{x^2} \, dx}{900-60 \sqrt {e}+e}\\ &=\frac {\int \left (-\frac {4 \left (-30+\sqrt {e}\right )^2 e^{\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}}}{x^2}-\frac {32 e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}+x}}{x}\right ) \, dx}{900-60 \sqrt {e}+e}\\ &=-\left (4 \int \frac {e^{\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}}}{x^2} \, dx\right )-\frac {32 \int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}+x}}{x} \, dx}{\left (30-\sqrt {e}\right )^2}\\ &=-\left (4 \int \frac {e^{\frac {4 e^{-2 e^x}}{\left (-30+\sqrt {e}\right )^2}}}{x^2} \, dx\right )-\frac {32 \int \frac {e^{-2 e^x+\frac {4 e^{-2 e^x}}{900-60 \sqrt {e}+e}+x}}{x} \, dx}{\left (30-\sqrt {e}\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.55, size = 25, normalized size = 1.00 \begin {gather*} \frac {4 e^{\frac {4 e^{-2 e^x}}{\left (-30+\sqrt {e}\right )^2}}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 46, normalized size = 1.84 \begin {gather*} \frac {4 \, e^{\left (-\frac {2 \, {\left ({\left (e - 60 \, e^{\frac {1}{2}} + 900\right )} e^{\left (x + 2 \, e^{x}\right )} - 2\right )} e^{\left (-2 \, e^{x}\right )}}{e - 60 \, e^{\frac {1}{2}} + 900} + 2 \, e^{x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (8 \, x e^{x} + {\left (e - 60 \, e^{\frac {1}{2}} + 900\right )} e^{\left (2 \, e^{x}\right )}\right )} e^{\left (\frac {4 \, e^{\left (-2 \, e^{x}\right )}}{e - 60 \, e^{\frac {1}{2}} + 900} - 2 \, e^{x}\right )}}{x^{2} e - 60 \, x^{2} e^{\frac {1}{2}} + 900 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 24, normalized size = 0.96
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{\frac {4 \,{\mathrm e}^{-2 \,{\mathrm e}^{x}}}{{\mathrm e}-60 \,{\mathrm e}^{\frac {1}{2}}+900}}}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -4 \, \int \frac {{\left (8 \, x e^{x} + {\left (e - 60 \, e^{\frac {1}{2}} + 900\right )} e^{\left (2 \, e^{x}\right )}\right )} e^{\left (\frac {4 \, e^{\left (-2 \, e^{x}\right )}}{e - 60 \, e^{\frac {1}{2}} + 900} - 2 \, e^{x}\right )}}{x^{2} e - 60 \, x^{2} e^{\frac {1}{2}} + 900 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.43, size = 23, normalized size = 0.92 \begin {gather*} \frac {4\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{-2\,{\mathrm {e}}^x}}{\mathrm {e}-60\,\sqrt {\mathrm {e}}+900}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 24, normalized size = 0.96 \begin {gather*} \frac {4 e^{\frac {4 e^{- 2 e^{x}}}{- 60 e^{\frac {1}{2}} + e + 900}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________