Optimal. Leaf size=33 \[ 1+\frac {4 e^{-2 x-\frac {x}{4 \left (-2+\frac {x^2}{3}\right )}}}{-2+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 2.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {45 x-8 x^3+\left (-24+4 x^2\right ) \log (4)}{-24+4 x^2}\right ) \left (126-270 x-51 x^2+99 x^3+4 x^4-8 x^5\right )}{288-576 x+192 x^2+192 x^3-88 x^4-16 x^5+8 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} \left (126-270 x-51 x^2+99 x^3+4 x^4-8 x^5\right )}{2 \left (6-6 x-x^2+x^3\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} \left (126-270 x-51 x^2+99 x^3+4 x^4-8 x^5\right )}{\left (6-6 x-x^2+x^3\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {4 e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2}-\frac {179 e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{25 (-1+x)}+\frac {36 e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} (1+x)}{5 \left (-6+x^2\right )^2}-\frac {21 e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} (1+x)}{25 \left (-6+x^2\right )}\right ) \, dx\\ &=-\left (\frac {21}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} (1+x)}{-6+x^2} \, dx\right )-2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} (1+x)}{\left (-6+x^2\right )^2} \, dx\\ &=-\left (\frac {21}{50} \int \left (-\frac {\left (6+\sqrt {6}\right ) e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{12 \left (\sqrt {6}-x\right )}-\frac {\left (-6+\sqrt {6}\right ) e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{12 \left (\sqrt {6}+x\right )}\right ) \, dx\right )-2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \left (\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (-6+x^2\right )^2}+\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx\right )-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (-6+x^2\right )^2} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2} \, dx-\frac {1}{200} \left (7 \left (6-\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx+\frac {1}{200} \left (7 \left (6+\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx\\ &=-\left (2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx\right )-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2} \, dx+\frac {18}{5} \int \left (\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{24 \left (\sqrt {6}-x\right )^2}+\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{24 \left (\sqrt {6}+x\right )^2}+\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{12 \left (6-x^2\right )}\right ) \, dx-\frac {1}{200} \left (7 \left (6-\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx+\frac {1}{200} \left (7 \left (6+\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx\\ &=\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}-x\right )^2} \, dx+\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}+x\right )^2} \, dx+\frac {3}{10} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{6-x^2} \, dx-2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2} \, dx-\frac {1}{200} \left (7 \left (6-\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx+\frac {1}{200} \left (7 \left (6+\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx\\ &=\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}-x\right )^2} \, dx+\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}+x\right )^2} \, dx+\frac {3}{10} \int \left (\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{2 \sqrt {6} \left (\sqrt {6}-x\right )}+\frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{2 \sqrt {6} \left (\sqrt {6}+x\right )}\right ) \, dx-2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2} \, dx-\frac {1}{200} \left (7 \left (6-\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx+\frac {1}{200} \left (7 \left (6+\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx\\ &=\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}-x\right )^2} \, dx+\frac {3}{20} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\left (\sqrt {6}+x\right )^2} \, dx-2 \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{(-1+x)^2} \, dx-\frac {179}{50} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{-1+x} \, dx+\frac {18}{5} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}} x}{\left (-6+x^2\right )^2} \, dx+\frac {1}{20} \sqrt {\frac {3}{2}} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx+\frac {1}{20} \sqrt {\frac {3}{2}} \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx-\frac {1}{200} \left (7 \left (6-\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}+x} \, dx+\frac {1}{200} \left (7 \left (6+\sqrt {6}\right )\right ) \int \frac {e^{\frac {x \left (45-8 x^2\right )}{4 \left (-6+x^2\right )}}}{\sqrt {6}-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 25, normalized size = 0.76 \begin {gather*} \frac {2 e^{-x \left (2+\frac {3}{4 \left (-6+x^2\right )}\right )}}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 35, normalized size = 1.06 \begin {gather*} \frac {e^{\left (-\frac {8 \, x^{3} - 8 \, {\left (x^{2} - 6\right )} \log \relax (2) - 45 \, x}{4 \, {\left (x^{2} - 6\right )}}\right )}}{2 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 26, normalized size = 0.79 \begin {gather*} \frac {2 \, e^{\left (-\frac {8 \, x^{3} - 45 \, x}{4 \, {\left (x^{2} - 6\right )}}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 38, normalized size = 1.15
method | result | size |
gosper | \(\frac {{\mathrm e}^{\frac {8 x^{2} \ln \relax (2)-8 x^{3}-48 \ln \relax (2)+45 x}{4 x^{2}-24}}}{2 x -2}\) | \(38\) |
risch | \(\frac {{\mathrm e}^{\frac {8 x^{2} \ln \relax (2)-8 x^{3}-48 \ln \relax (2)+45 x}{4 x^{2}-24}}}{2 x -2}\) | \(38\) |
norman | \(\frac {\frac {x^{2} {\mathrm e}^{\frac {2 \left (4 x^{2}-24\right ) \ln \relax (2)-8 x^{3}+45 x}{4 x^{2}-24}}}{2}-3 \,{\mathrm e}^{\frac {2 \left (4 x^{2}-24\right ) \ln \relax (2)-8 x^{3}+45 x}{4 x^{2}-24}}}{x^{3}-x^{2}-6 x +6}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 22, normalized size = 0.67 \begin {gather*} \frac {2 \, e^{\left (-2 \, x - \frac {3 \, x}{4 \, {\left (x^{2} - 6\right )}}\right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.15, size = 33, normalized size = 1.00 \begin {gather*} \frac {2\,{\mathrm {e}}^{-\frac {2\,x^3}{x^2-6}}\,{\mathrm {e}}^{\frac {45\,x}{4\,\left (x^2-6\right )}}}{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 31, normalized size = 0.94 \begin {gather*} \frac {e^{\frac {- 8 x^{3} + 45 x + \left (8 x^{2} - 48\right ) \log {\relax (2 )}}{4 x^{2} - 24}}}{2 x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________