Optimal. Leaf size=24 \[ \left (x+\frac {\log (16)}{3}-\log \left (3-x^3\right )\right ) \log \left (\frac {1}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9 x-3 x^4+\left (3-x^3\right ) \log (16)+\left (-9+3 x^3\right ) \log \left (3-x^3\right )+\left (-9 x-9 x^3+3 x^4\right ) \log (x) \log \left (\frac {1}{\log (x)}\right )}{\left (-9 x+3 x^4\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 x-3 x^4+\left (3-x^3\right ) \log (16)+\left (-9+3 x^3\right ) \log \left (3-x^3\right )+\left (-9 x-9 x^3+3 x^4\right ) \log (x) \log \left (\frac {1}{\log (x)}\right )}{x \left (-9+3 x^3\right ) \log (x)} \, dx\\ &=\int \left (-\frac {3 x+\log (16)-3 \log \left (3-x^3\right )}{3 x \log (x)}+\frac {\left (-3-3 x^2+x^3\right ) \log \left (\frac {1}{\log (x)}\right )}{-3+x^3}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {3 x+\log (16)-3 \log \left (3-x^3\right )}{x \log (x)} \, dx\right )+\int \frac {\left (-3-3 x^2+x^3\right ) \log \left (\frac {1}{\log (x)}\right )}{-3+x^3} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {3 x+\log (16)}{x \log (x)}-\frac {3 \log \left (3-x^3\right )}{x \log (x)}\right ) \, dx\right )+\int \left (\log \left (\frac {1}{\log (x)}\right )-\frac {3 x^2 \log \left (\frac {1}{\log (x)}\right )}{-3+x^3}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {3 x+\log (16)}{x \log (x)} \, dx\right )-3 \int \frac {x^2 \log \left (\frac {1}{\log (x)}\right )}{-3+x^3} \, dx+\int \frac {\log \left (3-x^3\right )}{x \log (x)} \, dx+\int \log \left (\frac {1}{\log (x)}\right ) \, dx\\ &=x \log \left (\frac {1}{\log (x)}\right )-\frac {1}{3} \int \left (\frac {3}{\log (x)}+\frac {\log (16)}{x \log (x)}\right ) \, dx-3 \int \left (-\frac {\log \left (\frac {1}{\log (x)}\right )}{3 \left (-\sqrt [3]{-3}-x\right )}-\frac {\log \left (\frac {1}{\log (x)}\right )}{3 \left (\sqrt [3]{3}-x\right )}-\frac {\log \left (\frac {1}{\log (x)}\right )}{3 \left ((-1)^{2/3} \sqrt [3]{3}-x\right )}\right ) \, dx+\int \frac {1}{\log (x)} \, dx+\int \frac {\log \left (3-x^3\right )}{x \log (x)} \, dx\\ &=x \log \left (\frac {1}{\log (x)}\right )+\text {li}(x)-\frac {1}{3} \log (16) \int \frac {1}{x \log (x)} \, dx-\int \frac {1}{\log (x)} \, dx+\int \frac {\log \left (3-x^3\right )}{x \log (x)} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{-\sqrt [3]{-3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{\sqrt [3]{3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-1)^{2/3} \sqrt [3]{3}-x} \, dx\\ &=x \log \left (\frac {1}{\log (x)}\right )-\frac {1}{3} \log (16) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )+\int \frac {\log \left (3-x^3\right )}{x \log (x)} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{-\sqrt [3]{-3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{\sqrt [3]{3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-1)^{2/3} \sqrt [3]{3}-x} \, dx\\ &=x \log \left (\frac {1}{\log (x)}\right )-\frac {1}{3} \log (16) \log (\log (x))+\int \frac {\log \left (3-x^3\right )}{x \log (x)} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{-\sqrt [3]{-3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{\sqrt [3]{3}-x} \, dx+\int \frac {\log \left (\frac {1}{\log (x)}\right )}{(-1)^{2/3} \sqrt [3]{3}-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.17 \begin {gather*} \left (x-\log \left (3-x^3\right )\right ) \log \left (\frac {1}{\log (x)}\right )-\frac {1}{3} \log (16) \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 25, normalized size = 1.04 \begin {gather*} \frac {1}{3} \, {\left (3 \, x + 4 \, \log \relax (2) - 3 \, \log \left (-x^{3} + 3\right )\right )} \log \left (\frac {1}{\log \relax (x)}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 26, normalized size = 1.08 \begin {gather*} -x \log \left (\log \relax (x)\right ) - \frac {4}{3} \, \log \relax (2) \log \left (\log \relax (x)\right ) + \log \left (-x^{3} + 3\right ) \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 25, normalized size = 1.04
method | result | size |
risch | \(\left (-x +\ln \left (-x^{3}+3\right )\right ) \ln \left (\ln \relax (x )\right )-\frac {4 \ln \relax (2) \ln \left (\ln \relax (x )\right )}{3}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 26, normalized size = 1.08 \begin {gather*} -\frac {1}{3} \, {\left (3 \, x + 4 \, \log \relax (2)\right )} \log \left (\log \relax (x)\right ) + \log \left (-x^{3} + 3\right ) \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.61, size = 46, normalized size = 1.92 \begin {gather*} -\ln \left (\frac {1}{\ln \relax (x)}\right )\,\left (\ln \left (3-x^3\right )+\frac {3\,x^2-x^5}{x\,\left (x^3-3\right )}\right )-\frac {4\,\ln \left (\ln \relax (x)\right )\,\ln \relax (2)}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 26, normalized size = 1.08 \begin {gather*} \left (x - \log {\left (3 - x^{3} \right )}\right ) \log {\left (\frac {1}{\log {\relax (x )}} \right )} - \frac {4 \log {\relax (2 )} \log {\left (\log {\relax (x )} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________