Optimal. Leaf size=18 \[ \log \left (4 x+64 (4-x)^2 \log (2 x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {256-127 x+16 x^2+\left (-128 x+32 x^2\right ) \log (2 x)}{x^2+\left (256 x-128 x^2+16 x^3\right ) \log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2}{-4+x}+\frac {-1024+764 x-193 x^2+16 x^3}{(-4+x) x \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )}\right ) \, dx\\ &=2 \log (4-x)+\int \frac {-1024+764 x-193 x^2+16 x^3}{(-4+x) x \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )} \, dx\\ &=2 \log (4-x)+\int \left (-\frac {129}{x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)}-\frac {8}{(-4+x) \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )}+\frac {256}{x \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )}+\frac {16 x}{x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)}\right ) \, dx\\ &=2 \log (4-x)-8 \int \frac {1}{(-4+x) \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )} \, dx+16 \int \frac {x}{x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)} \, dx-129 \int \frac {1}{x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)} \, dx+256 \int \frac {1}{x \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right )} \, dx\\ &=2 \log (4-x)-8 \int \frac {1}{(-4+x) \left (x+16 (-4+x)^2 \log (2 x)\right )} \, dx+16 \int \frac {x}{x+16 (-4+x)^2 \log (2 x)} \, dx-129 \int \frac {1}{x+16 (-4+x)^2 \log (2 x)} \, dx+256 \int \frac {1}{x \left (x+16 (-4+x)^2 \log (2 x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 25, normalized size = 1.39 \begin {gather*} \log \left (x+256 \log (2 x)-128 x \log (2 x)+16 x^2 \log (2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 35, normalized size = 1.94 \begin {gather*} 2 \, \log \left (x - 4\right ) + \log \left (\frac {16 \, {\left (x^{2} - 8 \, x + 16\right )} \log \left (2 \, x\right ) + x}{x^{2} - 8 \, x + 16}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 25, normalized size = 1.39 \begin {gather*} \log \left (16 \, x^{2} \log \left (2 \, x\right ) - 128 \, x \log \left (2 \, x\right ) + x + 256 \, \log \left (2 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 1.44
method | result | size |
norman | \(\ln \left (16 x^{2} \ln \left (2 x \right )-128 x \ln \left (2 x \right )+256 \ln \left (2 x \right )+x \right )\) | \(26\) |
risch | \(2 \ln \left (x -4\right )+\ln \left (\ln \left (2 x \right )+\frac {x}{16 x^{2}-128 x +256}\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 53, normalized size = 2.94 \begin {gather*} 2 \, \log \left (x - 4\right ) + \log \left (\frac {16 \, x^{2} \log \relax (2) - x {\left (128 \, \log \relax (2) - 1\right )} + 16 \, {\left (x^{2} - 8 \, x + 16\right )} \log \relax (x) + 256 \, \log \relax (2)}{16 \, {\left (x^{2} - 8 \, x + 16\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 25, normalized size = 1.39 \begin {gather*} \ln \left (x+256\,\ln \left (2\,x\right )-128\,x\,\ln \left (2\,x\right )+16\,x^2\,\ln \left (2\,x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 24, normalized size = 1.33 \begin {gather*} 2 \log {\left (x - 4 \right )} + \log {\left (\frac {x}{16 x^{2} - 128 x + 256} + \log {\left (2 x \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________